CS231A Midterm Review

May 3rd 2024

Agenda

- Exam logistics
- Preparation tips
- Core topics

Midterm logistics

- Format
- 10 True/False questions, 5 multiple choice questions, and 4 short answer questions
- 80 Minutes during class time (1:30 PM - 2:50 PM, May 6)
- Gates B1- Basement floor of the Gates Building
- Practice exam
- SCPD students - 24 hours window
- Open notes but closed Internet
- No electronic devices are allowed (calculators are allowed)

Preparing for the midterm

Resources:

- Lectures 1-10
- Problem Sets 0-2
- Course notes
- Recommended textbooks

Again: open notes!

- Focus on foundations \& high-level understanding; you will have time to look up details.

Core topics (1/2)

- General background
- Necessary linear algebrea
- Homogeneous coordinates
- Transformations
- Formulating \& solving least squares problems (when do we use an SVD?)
- Camera models
- Perspective \& non-perspective
- Degrees of freedom
- Distortion
- Calibration
- Single view metrology
- Vanishing points, vanishing lines

Core topics (2/2)

- Multiview geometry
- Epipolar geometry; essential and fundamental matrices; 8-point algorithm
- Structure from motion
- Stereo
- Perspective, affine, similarity ambiguities
- Active and volumetric stereo
- Structured lighting
- Space carving \& Shadow carving \& Voxel coloring
- Fitting and matching
- Least squares
- RANSAC
- Hough transforms
- Representations \& Representation Learning (High Level Questions)

Necessary Linear Algebrea

- 4 Basic spaces of a matrix: Null space, column space, row space, null space of transposed matrix
- Invertibility; Rank; Determinant
- Special matrices: identity matrix, triangular matrix, orthogonal matrix
- QR decomposition: Decomposition of a matrix into orthogonal and upper triangular matrices.
- SVD:
- Data Compression: Vectors corresponding to k largest singular values
- Solve a (non-zero) vector in the null space of a matrix approximately: The vector corresponding to the smallest singular value

Homogeneous Coordinates

- Augmented space for writing coordinates:

$$
\text { 2D: } \quad\left[\begin{array}{l}
x \\
y
\end{array}\right] \Longleftrightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Longleftrightarrow\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]
$$

$$
\text { 3D: }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \Longleftrightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \Longleftrightarrow\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]
$$

2D Lines

Homogeneous coordinates give us a neat way of representing 2D lines as vectors/orthogonality constraints:

$$
\begin{aligned}
a x+b y+c & =0 \\
{\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{lll}
x & y & 1
\end{array}\right]^{T} } & =0
\end{aligned}
$$

=> symmetry between lines and points
=> cross products suddenly becomes very useful!

2D Lines

How can we get the line connecting two points?

Given: $\begin{array}{lll} & {\left[\begin{array}{lll}x_{1} & y_{1} & 1\end{array}\right]} \\ & {\left[\begin{array}{lll}x_{2} & y_{2} & 1\end{array}\right]}\end{array}$
Unknown:

$$
\left[\begin{array}{lll}
a & b & c
\end{array}\right]
$$

Subject to:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{lll}
x_{1} & y_{1} & 1
\end{array}\right]^{T}=0} \\
& {\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{lll}
x_{2} & y_{2} & 1
\end{array}\right]^{T}=0}
\end{aligned}
$$

Solution:

$\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}x_{1} \\ y_{1} \\ 1\end{array}\right] \times\left[\begin{array}{c}x_{2} \\ y_{2} \\ 1\end{array}\right]$

2D Lines

How can we get the intersection of two lines?

Given:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
a_{2} & b_{2} & c_{2}
\end{array}\right]}
\end{aligned}
$$

Unknown:

$$
\left[\begin{array}{lll}
x & y & 1
\end{array}\right]
$$

Subject to:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1}
\end{array}\right]\left[\begin{array}{lll}
x & y & 1
\end{array}\right]^{T}=0} \\
& {\left[\begin{array}{lll}
a_{2} & b_{2} & c_{2}
\end{array}\right]\left[\begin{array}{lll}
x & y & 1
\end{array}\right]^{T}=0}
\end{aligned}
$$

Solution:

$$
\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right] \times\left[\begin{array}{l}
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right]
$$

Transformations

Isometric transformations:
Distances preserved

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

国-
Similarity transformations:
Shapes preserved

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
S R & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right], S=\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]
$$

Affine transformations:

Parallelism preserved

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
A & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Projective transformations:
Lines preserved

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ll}
A & t \\
v & b
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Pinhole Cameras

$$
P^{\prime}=\left[\begin{array}{cccc}
\alpha & -\alpha \cot \theta & c_{x} & 0 \\
0 & \frac{\beta}{\sin \theta} & c_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Camera Models

- Weak perspective projection
- Useful when relative depth of the scene is small and distant
- Magnification m is the ratio of the depth of the scene to camera focal length f '
- Under what cases is the weak perspective accurate and why?

Camera Calibration

- Intrinsic Parameters: K
- Extrinsic Parameters: R, T
- 11 DOF
- 5 from K
- 3 from R
- 3 from T

$$
\mathrm{P}^{\prime}=\mathrm{M}_{\mathrm{w}} \stackrel{\mathrm{~K}}{\mathrm{In} \text { Internal parameters }} \begin{gathered}
\text { External parameters }
\end{gathered}
$$

- Know how to construct the homogeneous linear system

Single View Metrology

Under projective transformation, parallel lines converge to a vanishing point:

We used this for camera calibration in PSET 1!

$$
\underset{[E q .24]}{\mathbf{v}}=K \mathbf{d}
$$

$$
\begin{array}{|c|}
\hline \mathbf{n}=\mathrm{K}^{\mathrm{T}} \mathbf{l}_{\text {horiz. } 27]} \\
\hline
\end{array}
$$

$$
\cos \theta=\frac{\mathrm{v}_{1}^{\mathrm{T}} \omega \mathrm{v}_{2}}{\sqrt{\mathrm{v}_{1}^{\mathrm{T}} \omega \mathrm{v}_{1}} \sqrt{\mathrm{v}_{2}^{\mathrm{T}} \omega \mathrm{v}_{2}}}
$$

[Eq. 28]

$$
\xrightarrow{\boldsymbol{\theta}=90} \underset{\substack{\mathrm{~T} \\ \mathrm{v}_{1} \\[\mathrm{Eq} .29] \\ \mathrm{v}_{2} \\ \hline}}{ }
$$

Useful to:

- To calibrate the camera

$$
\begin{array}{|l}
\hline \omega=\left(K K^{T}\right)^{-1} \\
\text { [Eq. 30] }
\end{array}
$$

- To estimate the geometry of the 3D world

Epipolar Geometry

Essential matrix:

A point \rightarrow epipolar line mapping for canonical cameras ($\mathrm{K}=\mathrm{I}$)

$$
\begin{gathered}
l^{\prime}=E^{T} p \\
l=E p^{\prime} \\
p^{T} E p^{\prime}=0
\end{gathered}
$$

Epipolar Geometry

Given a 2D point in one camera, a correspondence in the other must lie on an epipolar line

If p^{\prime} is known, we can compute l and search for \boldsymbol{p} using:

$$
l^{T} p=0
$$

If \boldsymbol{p} is known, we can compute l' and search for \boldsymbol{p} ' using:

$$
l^{T} p^{\prime}=0
$$

Epipolar Geometry

Fundamental matrix:
A point \rightarrow epipolar line mapping for general projective cameras

$$
\begin{aligned}
& l^{\prime}=F^{T} p \\
& l=F p^{\prime} \\
& p^{T} F p^{\prime}=0
\end{aligned}
$$

Epipolar Geometry

Computing the fundamental matrix with the 8-point algorithm:

- Homogeneous system Wf=0
=> Solve with SVD, then project to rank 2

Epipolar Geometry

Parallel images planes or rectification:
simplifies correspondence problem, moves epipoles to infinity

Structure from Motion

Determining structure and motion

- Structure: n 3D points
- Motion: m projection matrices

You've implemented a few algorithms for this!

- Factorization
- Triangulation

Factorization Method

- Affine Structure from Motion
- Assume all points are visible
- SVD - solution not unique
- Ambiguities
- Affine Ambiguity
- Similarity Ambiguity

Algebraic approach

- Compute fundamental matrix F
- Use F to estimate projective cameras
- Use these cameras to triangulate and estimate points in 3D
- Works with 2 views

Bundle Adjustment

Non-linear method for refining structure and motion
Goal: minimize reprojection error
Advantages

- Handle large number of views
- Handle missing data

Limitations

- Large minimization problem
- Require good initialization

Active Stereo

Active Stereo

- Replaces one camera with a projector
- Solves matching problem

Volumetric Stereo

Space carving

- Use contours and silhouettes
- Complexity: $\mathrm{O}(\mathrm{N} \wedge 3)$
- Octrees
- Conservative estimations
- Cannot carve concavity

Volumetric Stereo

Shadow carving

- Use shadows
- Complexity: $\mathrm{O}(2 \mathrm{~N} \wedge 3)$
- Conservative estimations
- Can carve concavity

- Limitations with reflective \& low albedo regions

Volumetric Stereo

Voxel carving

- Use colors
- Complexity: $\mathrm{O}(\mathrm{LN} \wedge 3)$
- Model intrinsic scene colors and textures

Fitting and Matching

- 3 Techniques:
- Least Square Methods
- Normal Equations
- SVD
- RANSAC
- Hough Transform
- Advantages and disadvantages of each technique?

Least square

- Find (m, b) to minimize the fitting error (residual):

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

- Normal Equation:

$$
h=\left(X^{T} X\right)^{-1} X^{I} Y
$$

- Fail for vertical lines

Least square

- Find a line to minimize the sum of squared distance to the points

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}+d\right)^{2}
$$

- Can be solved by SVD

RANSAC

Random sample consensus

For fitting a model to noisy data!
Iterative approach:

- Sample a subset of points
- Fit our model
- Count the total \# of inliers that match this model

- Repeat

Hough Transforms

Key idea for line fitting:

- Map points in (x, y) to a line in our Hough space
- Each point in our Hough space represents a line in our (x, y) space
- Intersection of lines in hough space = line
- Polar line representation
- Discretization and voting

Good Luck!

Questions

