
Lane Point Cloud Prediction for Autonomous Driving

Shawn Manuel
Stanford University
CA, 94305, USA

sman64@stanford.edu

Abstract

3D lane detection is an essential functionality for Self-
driving cars to stay within upcoming lane boundaries. We
present a deep learning model for predicting the point
clouds representing arbitrary lane curves from an image of
the front facing view of a simulated autonomous vehicle. We
also introduce an approach for gathering a dataset to train
this model when specialized 3D sensing tools such as Li-
DAR are unavailable. Results show that our model is able
to accurately predict the lane point clouds from a single
image however highest accuracy is usually only achieved
when the image is taken from the center of the track.

1. Introduction
Autonomous driving based on image perception has

been a popular application of computer vision allowing for
lane detection and obstacle avoidance without the need of
LIDAR sensors [6, 1, 3]. Lane detection is essential for au-
tonomous vehicles to stay within the boundaries of the road
it is driving on when sharing the road with other drivers. As
a result, predicting the 3D location of the lanes of a road
is useful for planning the steering of the car in future time
steps to keep the car within its lane as it is driving.

3D localization of objects in relation to an autonomous
vehicle is an active area of research with recent approaches
to detect the lane delimiters of urban roads. Two com-
mon approaches for scene modeling is with 3D point clouds
[1, 3] and parameterizing object boundaries with polynomi-
als [2]. Using polynomials to define the curvature of lanes
has been effective for predicting the lanes of straight or
smooth roads, however it is also reliant on this assumption
during inferance and may not generalize to sharp turns. On
the other hand, 3D point clouds are a less explored method
which is more computationally intensive to calculate but
can adapt to any track curvature. With the recent advance-
ment in deep learning for image processing, it is becoming
more and more feasible to compute large 3D point clouds at
a rate close to the runtime required for real-time control of

Figure 1. 3D view of simulated track segment

Figure 2. Point sequences representing track boundaries

autonomous vehicles [1].
The problem to be solved by this project involves 3D

point cloud estimation from a monocular image to predict
the boundaries of the track segment being observed from
a camera’s perspective view. Figure 1 shows the 3D first
person perspective image of the track rendered by a cam-
era mounted at the front of a simulated car. The goal is to
predict the point cloud of 3D points that represent the track

1



Figure 3. Track specification as point sequence

boundaries up to a fixed length ahead of the car’s position
as shown by the 3D black points in Figure 2, which are
also seen as the black dots in Figure 1 when projected onto
the image plane. Since sampling 3D point clouds of lanes
requires specialized tools such as LiDAR sensors [1], we
will design a 2D car simulation environment to render input
images of the track view and generate the boundaries of a
fixed length segment of the track to be predicted. We will
then define a convolutional neural network model to predict
positions of the target output points.

This paper has the following structure: Section 2 pro-
vides an overview of the previous work in 3D lane detection
for autonomous driving; Section 3 describes the approach
for modeling the autonomous driving environment for data
collection and training of the lane prediction model; Sec-
tion 4 presents our experimental setup and results; and Sec-
tion 5 concludes and suggests future research directions.

2. Background
In this section we provide an overview of previous ap-

proaches to localize nearby lanes for autonomous driving.

2.1. Related Work

Previous approaches for localizing lanes in 3D have in-
volved using deep learning to process images of the road
view from the vehicle’s front facing camera and predict the
location of lanes in 2D through pixel feature maps, or in 3D
in the form of curves parameterized by polynomials.

Kim and Lee developed an image based lane detection
method using convolutional neural networks to output an
image mask where high pixel values correspond to regions
in the input image that are lanes. This approach applied
edge detection with a CNN to output a simplified edge map
which was then passed through the RANSAC algorithm to
filter out edges that are not lanes. While this approach can

Figure 4. Birds eye view of track boundaries

effectively identify lanes, it doesn’t provide any 3D infor-
mation about the location of the lanes based on the single
image input [4].

Garnett et al. developed a deep learning approach to pre-
dict the 3D curves representing lanes as observed from the
driver’s position looking in front of the car [2]. This was
taken from a single image of the driver’s view and input to
a neural network which predicts the parameters for curves
defining the lanes. This approach first learns a mapping
from the projected input image space to a birds eye view of
the lane, from which it then fits polynomials to each lane de-
tected from the top view image. This approach was able to
accurately match lanes observed in the image to 3D curves,
however, it was mostly trained on smooth and slow-curving
roads whereas sharp turns may have high variance when fit
with polynomials learned for straight roads.

Finally, Chen et al. use LiDAR sensors to generate 3D
point clouds to reconstruct the scene that a car is driving
within. It doesn’t use deep learning for lane detection, but
uses a Bayes filter to localize the car within the scene. Al-
though the point clouds generated could be useful for lane
detection, generating a dataset and extracting lanes manu-
ally is unfeasible in a short time frame which emphasises
our motivation for using a car simulator to generate lane
point clouds.

3. Technical Approach

In this section, we present the approach for training a
deep learning model to predict the point cloud represent-
ing the lane boundaries of a visible road segment from a
projected image of the road. Since measuring the 3D point
cloud sequence of lanes in the real world is expensive, we
will use a simple 3D car simulator to render views of the
road as input and calculate the corresponding point cloud
that should be output by the network.

2



Figure 5. Kinematic (X , Y , ψ) and dynamic (V x, V y, ψ̇) proper-
ties describing the state of the car at a given time.

3.1. 3D Lane Point Cloud Modeling

The first step in designing a 3D car simulator is to define
a sequence of 2D points on the x-y plane that form the track
as shown in Figure 3. We also specify a desired track width
used for generating the sequence of boundary points on ei-
ther side of the track resulting in a path shown in Figure 4.

The second component is the dynamics of the car which
will be defined by simple Bicycle Model vehicle dynamics
[5] which determines the state transition of the car at each
time step. The dynamics operates primarily on the car’s
position (X,Y ), heading ψ, forward velocity Vx, lateral ve-
locity Vy and yaw velocity ψ̇ as shown in Figure 5.

Given the (X,Y ) location and the heading ψ of the car,
a camera model can be defined to view the scene at the cur-
rent time step. This camera model is located at the car’s
(X,Y ) location in a 3D world space at a fixed height h and
facing the car’s ψ direction taken from the positive x-axis
as shown in Figure 6. In order to render the image viewed
by the camera and define a target lane point cloud, a set of
transformation matrices is needed to map true positions of
the track boundaries to be relative to the camera. The trans-
lation matrix T is defined to be the 4×4 transformation ma-
trix that transforms the car’s location in homogenious coor-
dinates (X,Y, 0, 1) to the camera’s origin (0, 0, 0, 1) on the
x-y plane. Then, a rotation matrix R is defined to be the
4 × 4 transformation matrix that rotates the camera from
pointing along the positive x-axis to rotate a certain pitch in
the vertical direction, and angle ψ about the z-axis. Finally,
the camera intrinsic matrix K is defined to map 3D points
into pixel coordinates on a specified image plane.

The image of the perspective view of the road from the
car’s location can then be rendered with ray tracing from
the focal point for each pixel coordinate (u, v) with the ray
direction (dx, dy, dz) = RTK−1× (u, v, 1)T . An example

Figure 6. Camera model field of view from current orientation and
location in world coordinates.

of a rendered image is shown in Figure 1.
For each image state rendered, the prediction target is

a point cloud representing the lane boundaries of a fixed
length segment of the track starting at the camera position.
The starting track index is found as the index of the point
nearest to the car’s position. First, these 3D points need to
be transformed from world coordinate system to the camera
coordinate system as shown in Figure 2 by multiplying the
coordinates by the T and R matrices.

3.2. Model Architecture

The model for predicting the fixed point cloud sequences
of the two lanes from the images of the the road will be a
neural network consisting of convolutional layers and linear
layers to map each input RGB image into a set of 3D coor-
dinates. The network has 4 convolutional layers each with
a kernel size of 3, stride of 2 and padding of 1 mapping the
channels from 3 to 4, 8, 16 and 32 respectively in sequence.
Then, the output of the last convolutional layer is flattened
and passed to two linear layers with 1000 hidden units be-
fore being transformed to a shape representing a set of 3D
points. The standard mean squared error loss is used to train
the network to output the 3D positions corresponding to tar-
get point cloud.

4. Experiments
To evaluate the effectiveness of the model for predict-

ing lane point clouds, we generated a dataset of input im-
age to output point cloud by first training a controller pol-
icy with Reinforcement Learning and running the optimal
policies for 5 rollouts of the circuit shown in Figure 4 with
each rollout being approximately 475 time steps long. Be-
tween each rollout, the percentage of random actions was
increased from 0% to 20% in %5 intervals to sample im-
ages from different scenarios where the car may drive off

3



0 10 20 30 40 50
Ep

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

Lo
g_

10
 L

os
s

Test/Train Losses for CarRacing-curve-v1 viz3d
Train loss [logs_3]
Test loss <0-00:03:41>

Figure 7. Training and test loss curve against epoch iteration.
Losses are displayed in log10 scale

the road and the two lane boundaries may not be visible in
the image. During each rollout, a random process noise was
applied to the pitch (vertical viewing tilt) to sample different
projected views of the lanes.

For each input-output pair, the image rendered was of
size 240 × 320 × 3 and the output consisted of a sequence
of 50 3D points for the left and right lanes taken at the index
of the track closest to the car. The two lane sequences of x-y
positions are then transformed into camera space and con-
catenated to form an output size of 300. When certain 3D
points were not visible on the screen, the corresponding 3D
coordinates were set to (0, 0, 0) for those points. Figure 7
shows the loss vs iteration plot for training the network on
2400 images with an 80-20 train-test split.

To evaluate the effectiveness of the model, we sampled
new images with the policy at different regions on and off
the track and compared the location of the predicted points
with the true locations of the lane points gathered based on
the car’s current location. We categorized the test samples
into three scenarios where the first has images when the car
is in the center of the track with view of both lanes as shown
in Figure 8 and Figure 9. The second has images where the
car is on the edge of the track and part of one of the track
boundaries is not visible as shown in Figure 10. The third
has images from when the car is off the track and viewing
distant parts of the track as seen in Figure 11. The 3D plot
on the right side of each image is the point cloud from cam-
era space rotated to be flat on the x-y plane to normalize the
variation in pitch angle. The predicted point cloud is shown
in red with the ground truth shown as black points.

For the first scenario of driving on the center of the track,
it was found that the model is able to predict the point clouds
closely for straight parts of the track as seen in Figure 8
as well as on turns as seen in Figure 9. The results were

also stable for different pitch angles. This is expected since
changing the pitch would also result in the target point cloud
being rotated about the camera origin which can be learned
by a neural network since the pitch angle limits are approx-
imately 20 degrees which is relatively linear. Thus, when
the output points of the network are rotated back to the x-y
plane, there is little deviation in the z values of each point.

For the second scenario of driving on the edge of the
track, it was found that when part of one side of the track
was not visible, the points for that side of track would
linearly interpolate from the camera center (0, 0, 0) to the
points where the lane became visible. This is seen in Fig-
ure 10 where the right lane curves toward the origin. This
effect is due to the regression loss used to train the network
which is prone to learning interpolated predictions between
multimodal target distributions.

For the third scenario where the car is off the track, the
predicted point cloud is less interpretable as two distinct
lanes and instead is more clustered randomly around the
camera origin as shown in Figure 11. This can be due to
the reduced proportion of training samples from this sce-
nario as the car would only deviate from the track for a few
time steps in the two rollouts where the maximum random
actions were selected. As a result, the network may per-
ceive the large green region in the center of the screen to
be similar to the scenario where the track is not visible and
hence predict points around (0, 0, 0) as this would lead to a
lower overall loss than predicting lane clouds for track re-
gions observed at a further distance from the camera.

5. Conclusions and Future Work
In this paper we presented a deep learning model for pre-

dicting the point clouds of the nearest lane boundaries with
a fixed number of points. We also presented an approach for
efficiently training this model on 3D projection views of a
track from a simulated car’s point of view with target point
clouds for each image. Results showed that the model is
effective for predicting the lane point clouds from an image
viewing the track from the center of the lane, and gener-
alizes to different pitch angles. For predictions where part
or all of the closest lanes are not visible in the image, the
predictions have much higher variance and are less inter-
pretable.

For future work, the reliability of the model in regions
away from the center of the track can be improved by us-
ing a recurrent neural network maintaining a history of ob-
served images to predict the new location of the lanes based
on its movement throughout the history. With further im-
provement in the generalizability of the model, the lane pre-
dictions could also be used for image state preprocessing in
reinforcement learning from visual observations where an
agent can use the 3D lane predictions to learn a policy that
stays within the predicted lanes.

4



Figure 8. Accurate point cloud prediction from image in the center of straight track.

Figure 9. Accurate point cloud prediction from image in the center of a turn.

Figure 10. Predicted point cloud when image on edge of track interpolates hidden points from the origin to the visible lane.

Figure 11. Predicted point cloud is clustered around origin when camera is off the track.
5



Supplemental Material
The source code for this project is available on github1 as

well as a supplementary video2 showing the three scenarios
that the model was evaluated on for more figures comparing
the predictions with the ground truth.

References
[1] Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-

Gonzalez, and Carl Wellington. 3d point cloud process-
ing and learning for autonomous driving. arXiv preprint
arXiv:2003.00601, 2020.

[2] Noa Garnett, Rafi Cohen, Tomer Pe’er, Roee Lahav,
and Dan Levi. 3d-lanenet: End-to-end 3d multiple lane
detection, 2019.

[3] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu,
Li Liu, and Mohammed Bennamoun. Deep learning
for 3d point clouds: A survey. IEEE transactions on
pattern analysis and machine intelligence, 2020.

[4] Jihun Kim and Minho Lee. Robust lane detection
based on convolutional neural network and random
sample consensus. In Chu Kiong Loo, Keem Siah Yap,
Kok Wai Wong, Andrew Teoh, and Kaizhu Huang, ed-
itors, Neural Information Processing, pages 454–461,
Cham, 2014. Springer International Publishing. ISBN
978-3-319-12637-1.

[5] P. Polack, F. Altché, B. d’Andréa-Novel, and A. de
La Fortelle. The kinematic bicycle model: A con-
sistent model for planning feasible trajectories for au-
tonomous vehicles? In 2017 IEEE Intelligent Ve-
hicles Symposium (IV), pages 812–818, 2017. doi:
10.1109/IVS.2017.7995816.

[6] Jigang Tang, Songbin Li, and Peng Liu. A re-
view of lane detection methods based on deep
learning. Pattern Recognition, 111:107623,
2021. ISSN 0031-3203. doi: https://doi.org/
10.1016/j.patcog.2020.107623. URL https:
//www.sciencedirect.com/science/
article/pii/S003132032030426X.

1https://github.com/shawnmanuel000/
3DLanePointCloudPrediction

2https://github.com/shawnmanuel000/
3DLanePointCloudPrediction/blob/main/
supplementary%20results%20video.mov

6

https://www.sciencedirect.com/science/article/pii/S003132032030426X
https://www.sciencedirect.com/science/article/pii/S003132032030426X
https://www.sciencedirect.com/science/article/pii/S003132032030426X
https://github.com/shawnmanuel000/3DLanePointCloudPrediction
https://github.com/shawnmanuel000/3DLanePointCloudPrediction
https://github.com/shawnmanuel000/3DLanePointCloudPrediction/blob/main/supplementary%20results%20video.mov
https://github.com/shawnmanuel000/3DLanePointCloudPrediction/blob/main/supplementary%20results%20video.mov
https://github.com/shawnmanuel000/3DLanePointCloudPrediction/blob/main/supplementary%20results%20video.mov

