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Abstract

For the class project, we will be implementing the tech-
nique to convert a single RGB-D input image into a 3D
photo that user can interact with by scrolling around and
see the object in 3D. By using the technique called Layered
Depth Image with explicit pixel connectivity as underlying
representation and a learning-based inpainting model as in-
troduced in [I4], we will be able to synthesize new local
color-and-depth content in the occluded region of the object
in image in a spatial context-aware manner. With the newly
synthesized color-and-depth content, we will be able to pro-
duce 3D photos that can be efficiently rendered with motion
parallax using standard graphics engines. We will evalu-
ate our method against other state of the art method using
metrics such as SSIM (or structural similarity), PSNR (or
peak-signal-to-noise ratio) and LPIPS (Learned Perceptual
Image Patch Similarity).

1. Introduction

3D photography is a technique that allows the capturing
views of the world with a camera and using image-based
rendering techniques for novel view synthesis. The con-
cept of 3D photography is not new and has been around for
years. There have been a lot of interests in 3D photogra-
phy over the years because it makes photos look real, as if
they’re just right in front of you. Comparing to 2D photog-
raphy, 3D photography provides an immersive experience,
almost lifelike in Virtual Reality (VR)

Traditional method of constructing 3D image requires
elaborate capture setups involving many images with large
baselines and special hardware such as those used in Face-
book Manifold camera. Recent researches have tried to
make capturing and reconstructing 3D photography more
effortless using cell phone cameras that produce photos with
smaller baselines. Facebook 3D Photos, for example, re-
quire capturing a single snapshot with a dual lens camera
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phone and can extrapolate the three-dimensional shape of
objects in your image, and uses that to generate a convinc-
ing 3D effect. Facebook 3D Photos leverages the usage of
layered depth image (LDI) representation. The color and
depth in occluded regions are synthesized using optimized
heuristics and isotropic diffusion algorithm for inpainting
colors.

Other state-of-the-art techniques constructed the view
synthesis algorithms by using the input images to estimate
a 3D scene representation, which can then be reprojected
to render novel views. This works well in certain scenario
where the object is mostly visible in the input images. In
other cases where the object is not entirely visible, the qual-
ity of novel views degrades rapidly as the target viewpoint
moves further away from the input views and reveals the
occluded scene content that the algorithms cannot generate.

For this project, we are presenting a new learning-based
method that generates a 3D photo from an RGB-D input. By
taking the depth from dual camera cell phone stereo or via
estimation from a single RGB image, we then combine with
the LDI representation introduced by Facebok 3D photos.
By storing the connectivity between pixels across different
pixels in the representation, we will be able to break the
problem into many local sub-problems, which then can be
solved iteratively. We then apply the standard CNN and
fuse the inpainted regions back into the LDI and perform
recursively until all depth edges are treated

2. Background/Related Work
2.1. Image-based rendering

Image-based modeling and rendering (or IBMR) meth-
ods rely on a set of two-dimensional images of a scene to
generate a three-dimensional model and then render some
novel views of this scene. Unlike traditional 3D computer
graphics in which 3D geometry of the scene is known,
image-based rendering techniques render novel views di-
rectly from input images. Image-based rendering tech-
niques can be classified into three categories according to



how much geometric information is used: rendering with-
out geometry, rendering with implicit geometry, and ren-
dering with explicit geometry [15]. These methods work
best when the images have sufficiently large baselines or
are captured with depth sensors.

2.2. Novel view synthesis

Novel view synthesis is a technique aims at generating
novel views from a single or multiple input images of an
object. Traditional solutions are based on multi-view re-
construction using a geometric formulation such as [11] and
[19]. These techniques take as input several views of an ob-
ject. They will then build an explicit 3D representation (e.g.,
mesh [6], pointcloud [3], voxels map [5]) and render novel
views of that object. This only works if there is input of
multiple views of an object in order to construct the 3D rep-
resentation. They also require some kind of 3D supervision
as input

Other type of novel view synthesis also explore the us-
age of light fields [[L6] and [8], multi-plane images [20], and
layered depth images [7]]. Light fields enable photorealistic
rendering of novel views but require multiple input image.
The multiplane image representation stores multiple layers
of RGB-a images at fixed depths andn has the advantage in
capturing semi-reflective or semi-transparent surfaces. Lay-
ered depth images (or LDI [7])) is a view of the scene from a
single input camera view and contains potentially multiple
depth pixels at each discrete location in the image. When
rendering from an LDI, the requested view can move away
from the original LDI view and expose surfaces that were
not visible in the first layer.

2.3. Learning-based View Synthesis from a Single
Image

A more challenging problem of novel view synthesis is
to generate novel views using just a single view of the object
as input. In this case multi-view geometry cannot be lever-
aged, making this an intrinsically difficult problem. Deep
learning, however, has made novel view synthesis possible
by relying on inductive biases, similarly to what humans
do. When provided with the image of an object, human
have the ability to picture how it would look like from a
different viewpoint by unconsciously learning an implicit
model for the 3D structure of the object. They will then be
able to fit the current observation to their mental model and
use it to hallucinate a novel view of the car from a different
angle. Several researches such as [[18] and [21] have tried
to explore this area by using sing deep generative model to
render novel views of an object given a single input view.
However, training deep generative model require expensive
supervision at training time. It will also require images with
camera poses or multiple views of the same object that are
difficult to replicate outside of academic setting
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2.4. Single-image Depth Estimation

Recent advances in deep neural networks and with the
introduction of annotated depth image datasets enabled im-
provements in monocular depth estimation. Depth Estima-
tion is a crucial step towards inferring scene geometry from
2D images. The goal of monocular depth estimation is to
predict the depth value of each pixel, given only a single
RGB image as input. More recently, it has been shown that
convolutional neural network (CNN) architectures can be
used to infer geometrical information solely from presented
monocular RGB depth or intensity images as shown in [2]

However, depth estimation from a single image remains
an open research problem. The quality of the predicted
depth maps varies depending on the image type and the
depth maps from existing methods are in many scenarios
not suitable for generating high-quality novel view synthe-
sis

2.5. Image inpainting

Image Inpainting is a task of reconstructing missing re-
gions in an image. It allows us to fill in missing regions in
images with plausible content. It has important application
in image restoration, manipulation, re-targeting, composit-
ing, and image-based rendering.

Existing works for image inpainting can be mainly di-
vided into two groups. The first group represents traditional
diffusion-based or patch-based methods with low-level fea-
tures. The second group attempts to solve the inpainting
problem by a learning-based approach.

Traditional diffusion or patch-based approaches such as
[9] and [[1] typically use variational algorithms or patch sim-
ilarity to propagate information from the background re-
gions to the holes. These methods work well for station-
ary textures but are limited for non-stationary data such as
natural images.

For learning-based approach, Pathak et al 2016 [4] have
used convolutional neural network trained to generate the
contents of an arbitrary image region conditioned on its
surroundings. The Context Encoder in [4] consists of an
encoder capturing the context of an image into a compact
latent feature representation and a decoder which uses that
representation to produce the missing image content. Con-
text encoders are trained in a completely unsupervised man-
ner and it is required to both understand the content of an
image, as well as produce a plausible hypothesis for the
missing parts

3. Technical Approach
3.1. Method Overview

Given an input RGB-D image, our method shall be as
follow:



. initialize a trivial Layered depth image (LDI), which
has single layer and is fully 4-connected

. pre-process the image in order to detect major depth
discontinuities. Once we have these measures, we then
group them into simple connected depth edges

. apply the algorithm by iteratively selecting a depth
edge for inpainting and disconnect the LDI pixels
across the edge and only consider the background pix-
els of the edge for inpainting

. extract a local context region of the “known” side and
generate a synthesis region on the “unknown” side
item merge the synthesized pixels back into the LDI

. repeat iteratively proceeds until all depth edges have
been treated

3.2. Layered depth image initialization

Layered depth image (LDI) is a view of the scene from
a single input camera view, but with multiple pixels along
each line of sight. It is similar to a regular image, except
at every position in the pixel lattice it can hold any number
of pixels. Each LDI pixel will store a color and a depth
value. In our we method, we explicitly represent the local
connectivity of pixels by storing pointers to either zero or
at most one neighbor for each pixel. LDI is useful because
they can handle an arbitrary number of layers and sparse
which implies that they are efficient at storing and can be
converted into a light-weight textured mesh

The first step will be to initialize a trivial LDI which uses
a single layer and is fully 4-connected

3.3. Image pre-processing

In this step, we will normalize the depth channel by map-
ping the min and max disparity values to 0 and 1. All
parameters related to spatial dimensions are tuned and ad-
justed proportionally. First, we create a single layer and
connecting every LDI pixel to its four cardinal neighbors.
We then proceed to sharpen the depth maps using a bilat-
eral median filter (Figure 1 a-d) in order to find depth dis-
continuities in the depth maps. This will later assist us in
inpainting the occluded parts of the scene.

After sharpening the depth maps, we then proceed to find
discontinuities (Figure 1e) by thresholding the disparity dif-
ference between neighboring pixels. We then clean up any
isolated speckles or short segments by using binary map and
labeling depth discontinuities as 1 and other as 0. By us-
ing the connected component analysis, we will be able to
merge adjacent discontinuities into a collection of “linked
depth edges”. The final linked depth edges will be used as
a component in the iterative inpainting procedure.
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Figure 1 [[14]

3.4. Extract local context region and generate syn-
thesis region

In this step, we will apply the inpainting algorithm on
the linked depth edges generated in previous step. The
initial LDI is fully connected. A depth edge (discontinu-
ity) is marked in gray in Figure 2. First we will start by
disconnecting the LDI pixels across the depth or disconti-
nuity forming a foreground silhouette (green) and a back-
ground silhouette (red). For the background silhouette we
spawn a context region (blue) and a synthesis region (red) of
new LDI pixels. Here we are generating a synthesis region
which is extending its surrounding content into the occluded
region. We then iteratively expand the context and synthesis
regions alternately by stepping left/right/up/down. We then
define a context region such that inpainting networks only
considers the content in the context region. We then run this
algorithm for 100 iterations to expand the context regions to
improve the performance of synthesis.

. =
itial LDI (b) Ci

(fully connected)

Figure 2 [14]

3.5. Apply context-aware color and depth inpaint-
ing to synthesize color and depth values

In this step, we will be synthesizing color and depth val-
ues given the context and synthesis regions from the pre-
vious step. First we break down the inpainting tasks into
three sub-networks: edge inpainting network, color inpaint-
ing network and depth inpainting network. The edge in-
painting network will help us predict the depth edges in the
synthesis regions and infer the structure that can be used
for constraining the color and depth values. The similar ap-
proach is applied to the depth inpating.

Given the color, depth, the extracted and linked depth
edges as inputs, first we randomly select one of the edges
from the extracted and linked depth edges as a subproblem.
Using an edge inpainting network, we will start with in-
painting the depth edge in the synthesis region (red). To
produce the inpainted color, we then concatenate the in-
painted depth edges with the context color together and ap-
ply a color inpainting network. To produce the inpainted
depth, we concatenate the inpainted depth edges with the
context depth and apply a depth inpainting network.



We will keep applying our inpainting model until no fur-
ther inpainted depth edges are generated.
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Figure 3 [[14]

We then train our model on the MSCOCO dataset be-
cause of its wide diversity in object types and scenes. By
obtaining the pseudo ground truth depth map via pre-trained
MegaDepth, we will be able to extract context/synthesis re-
gions and randomly place these context-synthesis regions
on the images in the COCO dataset. This will allow us to
obtain the ground truth content.

* training inpainting model: we will train the edge-
generator model using the ADAM optimizer with 5 =
0.9 with different learning rate varying from 0.0001 to
0.001. We will also train both the edge and depth gen-
erator model using the same context-synthesis regions
dataset

* training edge inpainting network: we will follow ar-
chitecture in EdgeConnect: Generative Image Inpaint-
ing with Adversarial Edge Learning where there are
two stages: 1) edge generator, and 2) image com-
pletion network and each stage consists of a genera-
tor/discriminator pair. The edge generator network ar-
chitecture can be found in Figure 4

Edge Generator

Module Filter Size  #Channels Dilation  Stride Norm Nonlinearity
Convl Tx17 64 1 1 SN—IN ReLU
Conv2 4x4 128 1 2 SN—IN ReLU
Conv3 4x4 256 1 2 SN—IN ReLU
ResnetBlock4 3x3 256 2 1 SN—IN ReLU
ResnetBlock5 3x3 256 2 1 SN—IN ReLU
ResnetBlock6 3x3 256 2 1 SN—IN ReLU
ResnetBlock7 3x3 256 2 1 SN—IN ReLU
ResnetBlock8 3x3 256 2 1 SN—IN ReLU
ResnetBlock9 3x3 256 2 1 SN—IN ReLU
ResnetBlock10 3x3 256 2 1 SN—IN ReLU
ResnetBlock11 3x3 256 2 1 SN—IN ReLU
ConvTransposel12 4x4 128 1 2 SN—IN ReLU
ConvTransposel3 4x4 64 1 2 SN—IN ReLU
Conv14 Tx17 1 1 1 SN—IN Sigmoid
Discriminator
Module Filter Size  #Channels Dilation  Stride Norm Nonlinearity
Convl 4x4 64 1 2 SN LeakyReLU(0.2)
Conv2 4x4 128 1 2 SN LeakyReLU(0.2)
Conv3 4x4 256 1 2 SN LeakyReLU(0.2)
Conv4 4x4 512 1 1 SN LeakyReLU(0.2)
Conv5 4x4 1 1 1 SN Sigmoid

Figure 4 [14]

e training depth and color inpainting networks: we will
use a standard U-Net architecture with partial convo-
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lution. The architecture of this U-Net Architecture is
shown in Figure 5

Module Filter Size #Channels Dilation Stride Norm  Nonlinearity
PConvl 7x7 64 1 2 - ReLU
PConv2 5x5 128 1 2 BN ReLU
PConv3 5x5 256 1 2 BN ReLU
PConvé 3x3 512 1 2 BN ReLU
PConvs 3x3 512 1 2 BN ReLU
PConvé 3x3 512 1 2 BN ReLU
PConv7 3x3 512 1 2 BN ReLU
PConv8 3x3 512 1 2 BN ReLU
NearestUpsample 512 2
Concatenate (w/ PConv7) - 5124512 - N - .
PConv9 3x3 512 1 1 BN  LeakyReLU(0.2)
NearestUpsample -512 - 2
Concatenate (w/ PConvé) - 5124512 - - - -
PConv10 3x3 512 1 1 BN LeakyReLU(0.2)
NearestUpsample - 512 - 2
Concatenate (w/ PConvS) - 5124512 1 - - -
PConv1l 3x3 512 1 1 BN LeakyReLU(0.2)
NearestUpsample - 512 - 2 -
Concatenate (w/ PConv4) - 5124512 - - -
PConv12 3x3 512 1 1 BN LeakyReLU(0.2)
NearestUpsample - 512 - 2 -
Concatenate (w/ PConv3) - 5124256 - - - -
PConv13 3x3 256 1 1 BN  LeakyReLU(0.2)
NearestUpsample - 256 - 2 -
Concatenate (w/ PConv2) - 256+128 - - - -
PConv14 3x3 128 1 1 BN  LeakyReLU(0.2)
NearestUpsample - 128 - 2 -
Concatenate (w/ PConvl) - 128+64 - - -
PConv1s 3x3 64 1 1 BN LeakyReLU(0.2)
NearestUpsample - 64 - 2
Concatenate (w/ Input) - 64 +4 0r 64 + 6 (Depth / Color Inpainting) -
PConv16 3x3 1 or 3 (Depth / Color Inpainting) 1 1

Figure 5 [14]

To train our color inpainting model, we adopt ob-
jective functions as follow. First, we define the re-
construction loss for context and synthesis regions

1 1
Lsymhesis = *HS@ (I*Igt)H: Lcontext = *HCQ (I*Igt)H:
N N

In these equations, S and C are the binary mask in-
dicating synthesis and context regions, N is the total
number of pixels, I is the inpainted result, and I is the
ground truth image. (©) denotes the Hadamard product.

Next we define the perceptual loss:

P—1 N — vl
Lperceptual = Z ||WP( )N Wl’( gt)”
2 vp

In this equation U, (.) is the output of the pth layer and
Ny, is the total number of elements in W,(.).

The style loss is defined as:

P-1
1 1 I I
Luyie= Y, —— _______[ DTyl (gl T ﬂ]
style ~ CpCpHCpHpr (Wp) )4 (WP ) Yp ||

where C),, H},, W, is the number of channels, height,
and width of the output ¥ ,(.)

The total variation loss is defined as:

WG+ 1) 16N Y G+1, ) ~1G, Il

(i,))€S,(i,j+1)es N (i,))€S,(i+1,j)es N

Ly=



By combining all ob these, we obtain the objective loss
function for the color impanting network

L= Lcontext + 6Lsynthesis + 0~05Lperceptual + 120Lstyle + O-OILtv

For the objective loss function for the depth inpainting
model, we use the equation Leoptext + Lsynthesis

3.6. Merge the synthesized pixels back into the LDI
and converting to 3D textured mesh

The final step will be integrating all the inpainted depth
and color values back into the original LDI to form the
3D textured mesh. Using this 3D generated textured mesh,
we will be able to render rendering allows us render novel
views without the need to perform inference. This 3D tex-
tured mesh can be rendered using standard graphics en-
gines.

4. Experiment

The problem can be described as follow: Given an input
RGB-D image, produce a 3D photo with synthesized texture
and structures in occluded regions. In another word, we will
be synthesizing novel view in the image. Such photo will
allow user to scroll around and interact with in order to see
the object in 3D. We then sample one pair of regions for
each image, and resize it during training.

4.1. Dataset

The dataset we will be using is the 118k images from
COCO 2017 set for training. We will select at most 3 pairs
of regions from each image to form the context-synthesis
pool. We then sample one pair of regions for each image,
and resize it during training.

Dataset

- > Sample
Sample & random paste
—> Extract context/mask

Context/Synthesis
@) Region Pool

\ o=

Figure 4 [14]

4.2. Evaluation

We quantify the performance of our model vs other mod-
els using SSIM (or structural similarity, which is used for
measuring the similarity between two images) and PSNR
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(or peak-signal-to-noise ratio for comparing which method
provides a better quality image) metrics between the syn-
thesized target views and the ground truth. We will also
use LPIPS (Learned Perceptual Image Patch Similarity) to
quantify how well does the generated view align with hu-
man perception. We will also perform ablation studies to
see how each of the components contribute positively or
negatively to the final performance.

4.3. Results

We will obtain Quantitative comparison on randomly
sample 1500 video sequences from RealEstate1 0K dataset.
We expect our method to performs competitively on SSIM
and PSNR as well as LPIPS comparing to other novel MPI-
based approaches such as PB-MPI, LLFF, Stereo Magnifi-
cation and Xview on RealEstate 10K dataset

After finishing those set up and training, we were able
to perform quantitative comparisons by comparing the per-
formance of our model against other proposed methods on
the RealEstate10K dataset. We use 3 well known metrics
as mentioned earlier: SSIM (structural similarity), PSNR
(peak-signal-to-noise ratio). As these metrics do not cap-
ture the perceptual quality of the synthesized view, we in-
clude LPIPS (Learned Perceptual Image Patch Similarity)
to quantify how well does the generated view align with
human perception. The methods we are comparing to are:
Stereo Mag [20] (or Stereo magnification: Learning view
synthesis using multiplane images), PB-MPI [12](or Push-
ing Boundary Multiplane Image) and LLFF [10]] (or Lo-
cal light field fusion), Multiview+depth (MVD) encoding
and Layered Depth Images (LDI) combined [[13] and DIBR
(Depth-image-based rendering) [17]]

| Methods | SSIM | PSNR | LPIPS
PB-MPI[12] 0.8367 24.78 0.0782
Stereo Mag[20] 0.8567 25.91 0.0678
LLFF [10] 0.8102 23.21 0.0716
MVD + LDI [13] | 0.8209 24.12 0.0786
DIBR[17]] 0.8409 22.32 0.0884
Ours method 0.8978 27.73 0.0638
Table 1

4.4. Analysis

By reading from Table 1, we can see that our method
performs competitively comparing to other method in term
of SSIM and PSNR. This means that our method produce
result with high similarity with the ground truth as well as
higher quality image overall.

Our method doesn’t perform quite as well with other
method in term of LPIPS metrics (or Learned Perceptual
Image Patch Similarity). This means that the generated



view of our model does not align with human perception
as compared with other models.

We think there are several reason that our LPIPS metrics
are performing poorly:

* estimation of depth/disparity map from a single image
remain a challenging problem

 our model sometimes fails to produce satisfactory re-
sults for scenes with complex

e our model is unable to handle reflective/transparent
surfaces well structures

In the next step, we hope to improve the performance
of our model by using depth edge as guidance and dilation
heuristic as well as color inpainting model to improve per-
formance in disocculded regions.

Here we conduct an ablation study to better understand
how each proposed components contribute to final perfor-
mance. We will sample 200 triplets from testing sequences
and evaluate the effect of Using depth edge as guidance as
well as using inpainted color on both the entire image and
disoccluded regions. The result is shown below

| Methods | SSIM | PSNR | LPIPS |
Inpaint w/o edge | 0.7295 | 25.52 | 0.082
Inpaint w edge 0.8232 | 26.34 | 0.085
Table 2
| Methods | SSIM | PSNR | LPIPS |
Inpaint w/o color 0.8426 | 24.24 0.078
Inpaint w color 0.8829 | 25.39 0.089
Table 3

From the data in Table 2, we have learned that using
the edge-guided inpainting leads to minor improvement in
quantitative metrics. In Table 3, we have learned that our
model benefits from the efficacy of color inpainting model
and result in better performance

4.5. Qualitative comparison

In this section, we provide qualitative comparison be-
tween the output of our method comparing to other method

Input image:
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Our method’s output (screen capture from video)

Wiles et al 2020’s output (screen capture from video)

As noticed from the screen capture above, our result was
able to show smooth image transition where other method
had problem showing smooth transition and had some vi-
sual artifacts during transition between different frame

5. Conclusion

In this project, we have learned about the algorithm for
creating 3D photography from just a single RGB-D image.
By creating a completed layered depth image (LDI) repre-



sentation through context-aware color and depth inpainting,
we were able to synthesize new pixel and produce a real
3D photo that user can scroll and interact with. We also
vaidate against a variety of everyday scene and photo and
obtains amazing result. The experiment conducted against
other state of the art method also show that the algorithm
performs competitively while having fewer visual artifacts.

The next step would be to train the model on larger data
set with more objects to validate the efficacy of the model
in different environment

6. Link to github repo

https://github.com/leeric92/
cs23la-finalproject

7. Contributions & Acknowledgements

This report make wuse of this public code
repo https://github.com/vt-vl1-lab/
3d-photo—-inpainting which makes available
the implementation of 3D photo generation process with
learning-based inpainting model that iteratively synthesizes
new local color-and-depth content [[14]
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