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1. Introduction

Monocular camera systems are more and more being
used for positioning in UAVs (Unmanned Aerial Vehicles)
due to their low size, weight and power. However, pose es-
timation algorithms based on a single camera are extremely
sensitive to any error in the camera’s intrinsic parameters.
Laboratory calibration techniques can provide estimations
of the camera intrinsics that may not hold during high-
altitude flight. A calibrated camera can also experience
certain degradation during operations (caused by vibrations,
temperature changes, varifocals [1]), thus leading to small
shifts in the optical parameters. To ensure accuracy in po-
sition estimation, it is crucial to have a real-time update of
the camera intrinsics.

2. Problem Statement

The project objective is to address the autocalibration
problem using aerial imagery with a near planar terrain in
view. A specific algorithm is implemented and described in
the Technical Approach section. Different parallel, experi-
mental validation approaches shall be taken by the members
of the team using different datasets. One dataset consists
of runway images taken from an airplane during a landing
procedure. A close approximation of its camera calibration
and accurate ground truth position and orientation data are
known. A second dataset consists of transformed satellite
imagery to create a virtual aerial view from a specified pin-
hole camera calibration. A third dataset consists of lab tests
with a digital camera. In all cases, the camera intrinsics and
distortion model are known beforehand, so this information
can be used to evaluate the results. After these initial inves-
tigations, the team shall combine their efforts to apply the
solution to real aerial imagery without known landmarks
in view. These shall depend upon a further dataset with a
downward facing camera and known calibration for verifi-
cation purposes.

3. Technical Approach
Several publications [2–6] cover methods for self-

calibration and known-target camera calibration. Herrera

Figure 1. Image taken during landing

Figure 2. Steps of the algorithm by Herrera et al. [7]

et al. [7] propose a novel approach for self-camera cali-
bration using a planar scene with unknown texture which
claims to achieve similar accuracy to checkerboard-based
calibration approaches. This project is primarily based upon
this latter work while exploring its application to aerial im-
agery. The considered camera model is a pinhole camera
with nonsquare pixels, radial distortion and zero skew. The
distortion function

p = (pn − p0)
(
1 + ||pn − p0||2d0 + ||pn − p0||4d1

)
+ p0 (1)

has two distortion parameters d0, d1, where p is a point in
the image, p0 is the principal point, and pn is the projected
point. The resulting model thus has 6 dof: focal lengths
fx, fy , principal point p0 = (u0, v0), and distortion coef’s
d = (d0, d1).

The method consists in six steps which are depicted in
figure 2: 1) Feature extraction and matching, 2) Projective
Reconstruction, 3) Projective bundle adjustment, 4) Ho-
mography based calibration, 5) Metric reconstruction, and
6) Metric bundle adjustment.
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3.1. Feature extraction and matching

The input to the algorithm is a sequence of images of a
fundamentally planar scene. For each image, feature points
are identified using SIFT [8] followed by a FLANN [9]
matching algorithm applied to all images with respect to
the first one. The first image is arbitrarily considered as the
reference. Images with few correspondences and feature
points that fall outside of the planar structure of the scene
are discarded through an additional filtering stage.

3.2. Projective Reconstruction

The purpose of this step is to make a first estimation
of the feature point world coordinates and the perspective
transformation to their corresponding observations. As the
points in the scene belong to a planar structure, these can be
defined by 2D coordinates as y = [x, y]>. The world refer-
ence frame can be arbitrarily set in the center of the refer-
ence camera frame resulting in the initial world coordinates
being the same as their observations in the reference image
y = p0. The objective of this step is then limited to finding
the homographiesHi that transform observations in the ref-
erence image to their correspondences in all other images.
In order to reduce the effect of outliers a RANSAC method
is applied.

3.3. Projective Bundle Adjustment
Distortion effects haven’t been accounted for yet and can

result in significant error. Additionally, the homographies
have been computed in a pairwise manner using the ref-
erence image which ignores the fact that the other images
might constrain each other’s projective pose. This step es-
timates the camera distortion (d0, d1) and central point (u0,
v0) as well as refine the homography matrices Hi and the
world coordinates y. A bundle adjustment process is con-
ducted consisting in a nonlinear minimization of the follow-
ing function: 2.

argmin
d′,p0,Hi,yk

nimg∑
i

npts∑
k

ρ
(
||pik −D(Hiyk)||2

)
+ λ||p− p0||2 (2)

where d′, p0, Hi, yk are respectively the distortion parame-
ters, principal point, homography matrices, and point world
coordinates. D() is the distortion function of expression
(1) and ρ is a robust function to reduce the influence of
outliers. Experiments show slightly better results using a
Cauchy function as opposed to a linear one. λ||p − p0||2
is a regularization term to bias the central point towards the
center of the image, where λ is a hyper-parameter.

3.4. Homography based Self-Calibration

The purpose of this step is to recover the camera’s focal
length fx and fy as well as a better estimation of its central
point p0 = (u0, v0). This step does not consider distor-
tion since it has been already been corrected in the previous
stage.

Figure 3. Planar self-calibration geometry

A set of constraints is derived based on the assumption of
the planar scene. The scene plane in world coordinates can
be defined by its 3D normal vector n0 and two orthogonal
basis vectors which span the plane a0 and b0 as depicted
in figure 3. As a result, the orthogonality and equal norm
constraints can be expressed as follows:

a>i bi = 0; a>i ai − b>i bi = 0 (3)

These vectors may be readily derived for the reference im-
age and derived from the remaining images using: (e is an
arbitrary auxiliary fixed vector that is not parallel to n0)

a0 = n0 × e; b0 = n0 × a0 (4)

ai = K−1HiKa0; bi = K−1HiKb0; (5)

These are the constraints that enable the recovery of the
camera’s focal lengths and central point embedded in K. In
order to use a nonlinear minimization method to obtain both
K and n0, an initial guess for the focal length is needed.
This is accomplished using the following simplifications:
i) known plane normal n0 = [0, 0, 1] (scene plane fronto-
parallel to the reference image), ii) K = diag(f, f, 1), and
using equations 3 and 5 we obtain:

h31h32f
2 + h11h12 + h21h22 = 0 (6)

f2h231 − f2h232 + h211h
2
21 − h212 − h222 = 0 (7)

Once an initial guess for the focal length is estimated, a non-
linear minimization procedure can be conducted to obtain
K and n0 as follows:

argmin
K,n0

nimages∑
i

aibi
||ai||||bi||

+

nimages∑
i

(
1− ||bi||

2

||ai||2

)
(8)

The result of this step of the method is an estimation of the
camera’s intrinsic parameters in K and the normal to the
scene plane n0

3.5. Metric Reconstruction

With the initial estimate of the cameras’ intrinsics, it is
possible to compute the extrinsics by assuming an approx-
imation for the first (reference) frame camera extrinsics. A
new world reference frame is taken such that the scene plane
is placed at z = 0. The estimate for the rotation and trans-
lation of the reference camera is given by the relations:
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R = [a, b,n]T t = −Rn (9)

The next step is to triangulate all the feature points in
the reference frame in order to obtain the 3D world coordi-
nates of points X. This is achieved by intersecting the light
ray that goes from the center of the reference camera to each
feature point with plane z = 0. First, we take the 2D coordi-
nates xd of all feature points (in homogeneous coordinates)
and revert the projection (multiplying by K−1) in order to
obtain their coordinates in the camera’s reference system
xn. Then the direction of each ray l can be computed as:

lx = RTxn (10)

And the intersection with plane z = 0 follows the ex-
pression:

X =
l(d− b · n)

l · n
+ b (11)

In this case, d = 0, n = [0, 0, 1]T and b stands for the
center of the reference camera. By solving equation 11 with
the data from the reference frame, we obtain the 3D posi-
tions of the reference feature points Xr.

This gives us the full metric reconstruction for the refer-
ence frame. For the rest of keyframes, provided that K is
known, the extrinsics of the cameras are obtained by solv-
ing the Perspective n-Point problem, that requires as inputs
the 2D pixel coordinates of corresponding points in each
keyframe and their analogous in Xr. By completing this
procedure, the full metrics of each camera and frame are
known: the 3D points in the scene, the intrinsic and extrin-
sic camera parameters.

3.6. Metric Bundle Adjustment

The purpose of this final step is to simultaneously refine
the 3D coordinates of the points in the scene, the intrin-
sic camera parameters including distortion and the camera
poses for each image. To that end a non-linear optimization
procedure is applied to minimize the reprojection errors of
3D points as follows:

argmin
K,d,Ri,ti,xk

nimages∑
i

npoints∑
k

ρ (||pik − Pi(xk)||)2 (12)

4. Final Results
This section presents the results obtained from the ap-

plication of the method to images obtained from: (i)
close range (ii) aerial imagery and iii) satellite imagery.
An implementation of the method has been developed in
Python from scratch and is available at [10], making use of
opencv (feature detection and matching, initial homogra-
phy estimation) and scikit (nonlinear and least squares
solvers) libraries. The implementation includes all six steps
of the method detailed in section 3

Figure 4. Checkerboard images used for baseline calibration

Figure 5. Poster images used to apply the planar self-calibration
method

4.1. Close range imagery

One of the outcomes of the milestone report was that
the camera used for close range imagery applied unwanted
distortion correction to the images. We have repeated this
experiment with a Canon® EOS-450D DSLR camera with
18-50mm lenses ensuring that no distortion correction is ap-
plied to the images. We chose the wide end of the lenses
(18 mm) as it shows the most distortion, resulting in a more
challenging problem for the self-calibration method. A ma-
jor difference with respect to the experiment conducted in
the milestone, is that the missing metric reconstruction (3.5)
and final bundle adjustment (3.6) steps are now imple-
mented, which results in a dramatic improvement of the
camera calibration results.

A baseline calibration for the camera has been initially
obtained using the well known Camera Calibration Toolbox
for Matlab® [11]. To this end a set of 20 pictures of a known
checkerboard pattern1 were taken (see figure 4), and then
resized to 800 × 533 pixels. In order to apply the planar
self-calibration method, a sequence of 37 images of a poster
(planar surface with unknown texture) were taken at close
range in different poses, figure 5 shows a subset of such
images.

Table 1 compiles the results obtained for the camera’s

1The checkerboard pattern is made up by a grid of 14x9 squares of 25
mm length
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focal length, principal point, and distortion parameters as
well as the reprojection error of the 3D scene points onto
the images as follows:

• the baseline column shows the results obtained with
the Matlab calibration toolbox applied to the set of
checkerboard images

• the planar self-calibration column shows the re-
sults obtained by applying the method detailed in this
project to the sequence of poster images.

• the error column shows the deviation betweeen the
results obtained by the planar self-calibration and the
baseline checkerboard-based calibration methods. For
evaluation purposes, inside the parentheses the result
reported in the project milestone is shown, when the
method implementation was not completed yet.

• the published result column shows the results pub-
lished in the reference paper [7]

Figure 6. Feature points and matches concentrated towards the
center of the image

It can be observed that the focal length obtained by the
planar self-calibration method is very accurate with a devi-
ation of only 1.12% with respect to the baseline and really
close to the nominal 18mm focal length, even though it is
slightly greater than the one published in [7] we believe this
minor difference could be attributed to the different camera
and planar surface images being used in the publication. It
has to be highlighted the dramatic improvement obtained
with respect to the milestone results, which emphasizes the
effect of the metric reconstruction and final bundle adjust-
ment steps. It is also relevant to note that these focal length
results capture very well the squared pixel structure (devia-
tion in x and y very similar) whereas in the previous report
the focal length deviation between both dimensions was sig-
nificant (9.1% vs 6.9 %).

Analyzing the principal point results we observe that
they are on par with those obtained in the milestone but
still not as good as those published in the reference paper.
Again, the camera and images used can play a significant
role here, we will show better results for the principal point
when the very same method uses aerial imagery and a dif-
ferent camera in section 4.2.

baseline.
planar

self-calibration
error

%
published
result %

fx

657.61 px
(18.25 mm)

664.95 px
(18.45 mm) 1.12 (9.1) 0.69

fy

658.27 px
(18.27 mm)

666.04 px
(18.49 mm) 1.18 (6.9) 0.93

u0 401.66 425.68 5.9 (2.1) 2
v0 289.90 283.17 2.3 (4.7) -0.37
d0 −0.176 −3.75 · 10−7 100 (100) -37.63
d1 0.104 5.17 · 10−13 100 (100) -14.45

error 0.65 0.58 - 1.94 px
Table 1. Close range imagery self-calibration method results

The reprojection error obtained by the planar calibration
method is of only 0.58 px, much better than those published
in the reference paper (1.94 px) and slightly outperform
those of the baseline calibration (0.65 px), which is un-
usual. Such good results could be attributed to a higher den-
sity of feature points concentrated around the central part of
the image in most of the samples, where the effect of the
distortion is not substantial, this effect can be observed in
figure 6. This seems to be corroborated by the results ob-
tained in the distortion parameters which are very small in
magnitude, unveiling that just a slight distortion is needed
in order to obtain a good reprojection error. It has to be
noted that the reprojection error drives the metric bundle
adjustment step from which the final calibration results are
obtained. These good results could also be attributed to the
published method using a faster ORB feature detector as op-
posed to SIFT selected in this project which identifies more
features in a more homogeneous distribution throughout the
image resulting in better homography estimations.

One major outcome of the analysis of close range im-
agery is that the planar scene used for self-calibration has
to be carefully selected so that its distribution of features is
homogeneous throughout the scene, otherwise as has been
demonstrated, the results of the distortion model are poor.
Anyway, the method works very well for the remaining in-
trinsics of the camera, especially for the focal length.

4.2. Aerial Imagery

The implemented algorithm has been tested using real
aerial imagery from a landing maneuver at Sanderson Field
Airport (Figure 7). The images were taken with a forward-
looking GoPro camera at a resolution of 4K (3840x2160
px). The full set intrinsic parameters of the camera were
also given by the image provider and will be employed for
validation. It is noticeable that the input images do not have
a significant amount of texture in order to enhance feature
extraction. However, in the scene region closer to the run-
way, our algorithm is able to obtain good matches between
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Figure 7. Input aerial images to the implemented autocalibration
tool

Ground truth Self-calibration error (%)
fx 1749.42 px 1766.25 px 0.94
fy 1747.93 px 1747.92 px 0.98
u0 1891.50 px 1891.50 px 1.3
v0 1085.92 px 1085.92 px -0.07
d0 −0.268 −0.206 23.1
d1 0.0001 0.011 -

Table 2. Real camera intrinsics compared to the estimation with
the self-calibration algorithm.

all the images in the sequence, as it can be appreciated in
Figures 8 and 9.

Figure 8. Matching between real aerial images with the self-
calibration algorithm

Figure 9. Found correspondences between the last frame of the
sequence and the reference frame

A comparison between the intrinsic parameters esti-
mated with the proposed self-calibration methodology and
the real (ground truth) intrinsics is given in Table 2. Also,
the two radial distortion parameters included in the imple-
mented tool have been computed.

It is noteworthy that all intrinsic parameters are accu-
rately estimated, with error values lower than 1% with re-
spect to the ground truth. These results are encouraging as it

was expected that the strong perspective that is characteris-
tic of landing imagery and the lack of texture in most of the
scene would lead to a worse approximation. If compared to
the results obtained at the halfway of the project (milestone
report), it is clearly noticeable that the implementation of
the metric bundle adjustment has led to a great reduction of
estimation errors in all intrinsic parameters, but specially in
the principal point.

On the other hand, a good attempt has been made to cap-
ture the distortion of the images. The lenses employed dur-
ing the landing did present both radial and tangential distor-
tion, and these were defined by means of a 5-parameter dis-
tortion model. Given that the algorithm implemented in this
project does only account for radial distortion, it was chal-
lenging to obtain a fair approach given the disparity between
models. Nonetheless, the estimate of the first radial distor-
tion term d0 is the same order of magnitude than the real one
for the lenses, with an error level of 23%. This difference
is expected to come from the fact that the extracted features
for matching are not homogeneously distributed along the
entire scene.

4.3. Satellite Imagery

As an approximation to the objective of autocalibrating
at altitude, the approach is taken here to transform satellite
imagery to a this has the advantage that a perfect ground
truth and intrinsics are known, and the method can be easily
tested.

A set of 10 images are used representing a virtual,
downward-facing camera from a plane flying at approxi-
mately 900m above the terrain. The plane is performing
a left-handed turn during the image sequence, and in addi-
tion, small angular variations are reflected which may oc-
cur from control and turbulence. Thus, small motions ex-
ist in all 6-dof, yet the primary motion is parallel to the
underlying terrain. The images are generated using the
application osgEarth which transforms satellite imagery
obtained from [12] to a desired viewpoint and perspective
transformation. The generated imaes are shown in Figures
10 and 11.

The described algorithm produced erratic results de-
pending upon the initial conditions provided. An in-depth
analysis of the data indicated an accurate feature matching
with subpixel reprojection errors. However, some of the ini-
tially estimated homography matrices have condition num-
bers on the order of 106 which is poor.

In order to improve the optimization, a number of mea-
sures have been taken and implemented:

• selected feature points are scaled such that their mean
square distance to the origin is 2 pixels

• optimize over the homography inverse in the bundle

5



Figure 10. Aerial view generated with osgEarth from satellite im-
age.

Figure 11. Sample aerial images used for autocalibration.

Ground truth Self-calibration error (%)
fx 1117.65 px 1527.25 px 36.7
fy 1117.65 px 1455.30 px 30.3
u0 511.50 px 480.65 px 6.0
v0 383.50 px 415.15 px 8.3

Table 3. Real camera intrinsics compared to the estimation with
the self-calibration algorithm.

adjustment such that the inverse operation doesn’t en-
ter into the optimization

• the homographies and corresponding image pairs with
the best condition numbers are selected

• explicit Jacobians are programmed for the projective
and metric bundle adjustments within the autocalibra-
tion pipeline

Finally, the best results obtained are shown in Table 3
which are not promising. After further investigation and lit-
erature review, it has been identified that the case of pure
translation is a further degenerate case within the already
degenerate case we are studying. Considering the high alti-
tude and the relatively small rotation angles between sample
images, it is hypothesized that this experiment is too close
to this particular case. Zhang demonstrated the degener-
acy of a pure translation in which the planar target in one

image is parallel to a second one in [13]. In this case, the
addition of that image’s homography does not add any more
constraints to the optimization as they are linear dependent
upon the existing ones. Zhang proposed an alternative algo-
rithm specifically for this case which, however, required the
knowledge of the precise translation vector between frames
which is quite restrictive.

Yang [14] recently published an improvement to this au-
tocalibration procedure which only requires knowledge of
the distance between parallel frames. A subsequent par-
allel image with this approach adds one further constraint
upon the absolute conic ω = (KKT )−1 based upon the
inter-homography matrix and the relative distance between
images. Further necessary assumptions are that the instrin-
sics are skewless and the ratio of focal length is known, i.e.
fx
fy

. Up to four constraints can be obtained by this means
upon the absolute conic, which when combined with the
two original constraints upon the reference image and the
planar scene gives the six constraints necessary to solve for
the absolute conic. A Cholesky factorization can then be
used to solve for the intrinsic matrix K. This value could
then be used as an input in the metric reconstruction bundle
adjustment step described in Section 3.6.

5. Conclusions
One of the main conclusions that can be identified is

that the type of planar scene strongly influences the re-
sults of the presented self-calibration method. Even in a
controlled environment as detailed in section 4.1, the pla-
nar scene has to be carefully selected so that feature points
are homogeneously distributed throughout the scene, oth-
erwise the method will fail to identify a representative dis-
tortion model. One potential solution could be to further
enhance the feature extraction process to promote such ho-
mogeneous distribution of features, or at least notify when
it fails to do so. Other than that, the results for the remain-
ing camera intrinsics in a controlled environment are really
promising, and rival those obtained by means of conven-
tional checkerboard patterns and manual corner identifica-
tion, but with a more convenient setup and no manual inter-
vention.

The presented self-calibration method has been tested
using real aerial images from a landing maneuver. The esti-
mated intrinsic parameters reveal a reduced error level with
respect to the real ones, which suggests the suitability of this
proposed methodology for camera self-calibration prior to
autolanding vision-based maneuvers. It is expected that us-
ing images with more texture and more evenly distributed
features the radial distortion parameters of real lenses could
be reasonably estimated for cases in which the tangential
components of distortion have little influence over the ra-
dial ones.

Finally, for aerial views at a significant altitude above
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the terrain, the investigated method delivered poor results
not being able to converge to the true, known calibration. It
is estimated that the cause is that the relative pose between
sample images is too close to a pure translation which is
a degenerate case for this approach. A suitable approach
has been identified which serves to calculate a good, initial
value for the intrinsics for this particular case, and which
may subsequently be used in the final metric reconstruction
step for further refinement.
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