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Abstract 

 
DeepVoxel is a state of art technique in 3D 

reconstruction. It combines the classical camera geometry 
with deep learning methods elegantly and thus is worthy 
good attention in the spirits of this class. In the original 
paper, the authors use empirical numbers to assign value 
of two important parameters in the setup: voxel grid 
boundary and the number of training views. Yet, inspired 
by the homework in the class, I leverage depth map of each 
view to initialize the voxel grid with a tighter boundary. 
Also, I propose two subsampling methods to reduce the 
number of training views. Experiments show that the 
improved voxel boundary can result in better rendering of 
new views. They also show the model trained with a smaller 
number of views can deliver comparable quality, which 
suggests the view subsampling methods can reduce 
redundancy without losing information.  
 
https://github.com/yuanzheng625/ImprovedDeepVoxel 
 

1. Introduction 
3D reconstruction is a very popular topic in computer 

vision studies due to its wide applications in robotics, 
entertainment, virtual tourism, artifact preservation, 
augmented reality, human computer interaction, animation 
etc. In many settings, it is assumed that we access a set of 
2D images that are captured with known camera intrinsic 
and extrinsic parameters for each view. In the traditional 
methodology, however, correspondences across views are 
required to be established before applying bundle 
adjustment for the scene reconstruction. It is well known 
that finding correspondences is not only technically 
challenging but also computationally expensive. 
Thankfully, the new generation of 3D reconstruction 
algorithms successfully bypass this challenge: with the 
power of deep neural networks, the correspondence can be 
implicitly encoded within network weights, which we can 
learn through a lot of data. In the meantime, the 3D scene 
is also represented in feature vectors, rather explicit 

geometry.  
 
DeepVoxel [1], published in CVPR 2019, is an exemplar 

deep learning method to approach the 3D reconstruction 
problem. It combines scene reconstruction from multiple 
view images with volumetric stereo. The whole pipeline is 
summarized as follows: given one 2D view, first it goes 
through a feature extraction network to get the 2D features 
that represent this view. Then the 2D features are passed 
through another neural network to infer the corresponding 
3D voxel features. In particular, the positional mapping 
from 2D view features to the 3D voxel features is regulated 
by camera projection model. In fact, the 3D voxel feature 
so far comes from only a single 2D view, but we want to 
complete the 3D voxel feature through all available views. 
Therefore, the authors frame this 3D voxel feature as an 
update to the persistent 3D voxel features (hidden state) and 
use recurrent neural network (GRU) to integrate the update 
from multiple views. Then the 3D voxel features are 
mapped to another 2D feature from a different view (target). 
Again, the positional mapping is regulated by camera 
projection model. Finally, the loss is calculated by 
comparing the new projected view with its ground truth.  

 
The reasons that make me select DeepVoxel as baseline 

are that 1) Not entirely as a black box deep learning model, 
it utilizes the camera projection geometry we learned 
firsthand from the class to constrain neural networks that 
bridge 2D view feature to its 3D voxel features. 2) The 
method integrates multiple views in the same fashion as in 
volumetric stereo (e.g. space carving) to refine the 3D 
persistent voxel feature, thus I can apply the technique in 
space carving [4] to the baseline.  

 
Also, as all learning-based methods prefer, we want to 

explore what is the smallest amount of required data and 
how to use them efficiently to train a DeepVoxel model. 
Thus, I proposed two subsampling methods to reduce the 
number of 2D views for training and compare their 
performance with baseline.  
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2. Approach 

2.1.  Voxel grid boundary 

Based on the paper and also the code [3] provided by the 
authors, the voxel grid boundary is -1 < x < 1, -1 < y < 1 
and -1 < z < 1 in the voxel grid coordinate system. By 
placing the barycenter of the 3D objects approximately at 
the center of the world coordinates system, the grid system 
aligns with the world coordinates system but just off a 
translation and scale. With the world coordinate system and 
grid coordinate system unchanged, we argue that we can 
push the voxel grid boundary in the grid system a bit tighter.  

 
The method is to introduce depth map for each view. In 

the dataset, the authors do provide the depth map (Fig. 1) 
for each view. In realty, when taking each 2D view, we can 
add a depth sensor to get the complementary depth image.  

 

 
Fig.1 depth map of a 2D view in synthetic vase dataset 

 
Therefore, for each pixel in one view, we can get its 3D 

position in the world system via,  
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where 𝑀!" is the camera matrix of the view. 
 
Then the 3D point in the grid coordinate system is, 
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where 𝐻 is the transformation matrix from world system to 
grid system. 
 
 After computing all 3D points for one view in the 
synthetic vase dataset, we visualize it in Fig. 2. 

 
Fig. 2 All 3D points corresponding to one view 
 

When we integrate all the 3D points from all views, we can 
get a much complete view of the whole 3D scene, as show 
in in Fig. 3. 
 

 
Fig. 3 All 3D points from multiple views and the bounding 
box that enclose all 3D points 
 
Note that the authors make the cube assumption hardcoded 
in their implementation. To allow generic rectangle 3D 
voxel grids, I reimplement the mapping function between a 
2D view and its mask on the 3D voxel grid.  

2.2. 2D view subsampling 

In the paper, the authors use about 300 to 400 views to 
train a specific 3D object. As shown in Fig. 4, the camera 
army forms a sphere like array that encompasses the object.  

 

 
Fig. 4 A camera army surrounding the scene 
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Fig. 5 is a visualization of each camera position and 
orientation in the army. We can observe that the cameras 
forms a dense sphere, yet the neighbor views should cover 
significant overlapping areas. Therefore, we could 
subsample only one or a few among neighboring cameras 
to reduce redundancy (method 1).  

 
Fig. 5 Visualization of camera pose and position 
 
Also, starting from the 3D object center, the cameras 

locate gradually away from it. Thus we can subsample 
cameras in different distance from the object center. Just 
like a satellite covering on the earth: the higher of the 
satellite, the more coverage it has but with reduced 
resolution. So it is a trade-off between coverage and details. 
We propose method 2 to sample cameras along the distance.  
 

Method 1: I use convex hull algorithm (implementation 
in SciPy) to get the shell of the camera army sphere. The 
byproduct of this is the facets that every three vertexes lie 
on. This is an ad hoc to group different cameras into 
neighboring clusters. The subsampling method is as 
follows:  

a) Initialize two sets Q0 and Q1, where Q1 is the set 
composed of camera views we keep after 
subsampling and Q0 is the set composed of camera 
views we discard 

b) for each facet on the convex hull, get the three 
vertexes as candidates 

c) remove the candidates that are already in Q0 and Q1 
d) if there are still candidates left, sample one of them 

and put it into Q1 and the rest into Q0 
e) return Q1 as the sampled camera views 
 
This procedure can be done multiple times to generate 

different level of sparse camera views, shown in Fig. 6. 
 

 

 

 

 
Fig. 6 convex hull (each vertex is a subsampled camera) 

of 479, 232, 142 and 67 views 
 

Method 2: To subsample cameras according to the 
distance of each camera from the object center, I use 
multi-layer convex hull to approach this problem. For all 
cameras, we regard the cameras on the convex hull as the 
most outside ones. They form the layer with largest 
distance. Then we remove them and get the convex hull of 
the remaining cameras. The cameras on the new convex 
hull form the second layer and so on. Essentially this 
process is like peeling an onion, which provides us an 
effective way to traverse all the cameras. See Fig. 7. 
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Fig. 7 convex hull (each vertex is a camera) with 

different distant from object center 

3. Experiments 
Experiment 1: Tighter voxel boundary initialization 
 
The dataset we are using is the synthetic vase dataset 

(link) provided by the author. By running the boundary 
estimate code [5], we have the voxel grid boundary as -
0.205 < x < 0.205,  -0.500 < y <  0.500,  -0.204 < z < 0.204. 
With the volume of voxel decrease from 8 to 0.16 (50 times), 

we can increase voxel resolution by 50 while maintaining 
the same level of computation.  

 
Fig. 8 shows the model visual performance trained with 

better voxel grid. Comparing with baseline, the new render 
view (the third column) can recover more details to the 
ground truth. This is due to the voxel grid represent the 
scene more efficiently. 

 

 

 
Fig. 8 Visual performance of the two proposed 

improvements. From left to right: ground truth of a new 
view, new view rendered by baseline DeepVoxel, new view 
rendered by improved voxel grid boundary and new view 
render by model trained with reduced number of views. 

 
Experiment 2: Reduced number of training views 
 
I subsample the cameras with 142 views using method 1 

in Sec. 2.2. The remaining training parameters are the same 
as the baseline. As shown inn Fig. 8, the new render view 
(the fourth column) has comparable visual performance as 
the baseline.  

4. Conclusion 
In this project, I make two improvements over the 

baseline DeepVoxel. Inspired by the space carving method 
in the class, I better estimate the voxel grid boundary and 
thus learn a more efficient model to render new views. Also, 
I reduce the redundancies across camera views and 
subsample them to retrain the model. The experiments 
show that the proposed subsampling ad hoc results in 
comparable visual performance with the baseline but using 
a much smaller number of training views. 
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