

225

Abstract

DeepVoxel is a state of art technique in 3D

reconstruction. It combines the classical camera geometry
with deep learning methods elegantly and thus is worthy
good attention in the spirits of this class. In the original
paper, the authors use empirical numbers to assign value
of two important parameters in the setup: voxel grid
boundary and the number of training views. Yet, inspired
by the homework in the class, I leverage depth map of each
view to initialize the voxel grid with a tighter boundary.
Also, I propose two subsampling methods to reduce the
number of training views. Experiments show that the
improved voxel boundary can result in better rendering of
new views. They also show the model trained with a smaller
number of views can deliver comparable quality, which
suggests the view subsampling methods can reduce
redundancy without losing information.

https://github.com/yuanzheng625/ImprovedDeepVoxel

1. Introduction
3D reconstruction is a very popular topic in computer

vision studies due to its wide applications in robotics,
entertainment, virtual tourism, artifact preservation,
augmented reality, human computer interaction, animation
etc. In many settings, it is assumed that we access a set of
2D images that are captured with known camera intrinsic
and extrinsic parameters for each view. In the traditional
methodology, however, correspondences across views are
required to be established before applying bundle
adjustment for the scene reconstruction. It is well known
that finding correspondences is not only technically
challenging but also computationally expensive.
Thankfully, the new generation of 3D reconstruction
algorithms successfully bypass this challenge: with the
power of deep neural networks, the correspondence can be
implicitly encoded within network weights, which we can
learn through a lot of data. In the meantime, the 3D scene
is also represented in feature vectors, rather explicit

geometry.

DeepVoxel [1], published in CVPR 2019, is an exemplar

deep learning method to approach the 3D reconstruction
problem. It combines scene reconstruction from multiple
view images with volumetric stereo. The whole pipeline is
summarized as follows: given one 2D view, first it goes
through a feature extraction network to get the 2D features
that represent this view. Then the 2D features are passed
through another neural network to infer the corresponding
3D voxel features. In particular, the positional mapping
from 2D view features to the 3D voxel features is regulated
by camera projection model. In fact, the 3D voxel feature
so far comes from only a single 2D view, but we want to
complete the 3D voxel feature through all available views.
Therefore, the authors frame this 3D voxel feature as an
update to the persistent 3D voxel features (hidden state) and
use recurrent neural network (GRU) to integrate the update
from multiple views. Then the 3D voxel features are
mapped to another 2D feature from a different view (target).
Again, the positional mapping is regulated by camera
projection model. Finally, the loss is calculated by
comparing the new projected view with its ground truth.

The reasons that make me select DeepVoxel as baseline

are that 1) Not entirely as a black box deep learning model,
it utilizes the camera projection geometry we learned
firsthand from the class to constrain neural networks that
bridge 2D view feature to its 3D voxel features. 2) The
method integrates multiple views in the same fashion as in
volumetric stereo (e.g. space carving) to refine the 3D
persistent voxel feature, thus I can apply the technique in
space carving [4] to the baseline.

Also, as all learning-based methods prefer, we want to

explore what is the smallest amount of required data and
how to use them efficiently to train a DeepVoxel model.
Thus, I proposed two subsampling methods to reduce the
number of 2D views for training and compare their
performance with baseline.

Improved DeepVoxels: Better Grid Boundary Initialization and Reduced Number of

Training Views

Zheng Yuan
SCPD

Zheng.yuan.nicolas@gmail.com

226

2. Approach

2.1. Voxel grid boundary

Based on the paper and also the code [3] provided by the
authors, the voxel grid boundary is -1 < x < 1, -1 < y < 1
and -1 < z < 1 in the voxel grid coordinate system. By
placing the barycenter of the 3D objects approximately at
the center of the world coordinates system, the grid system
aligns with the world coordinates system but just off a
translation and scale. With the world coordinate system and
grid coordinate system unchanged, we argue that we can
push the voxel grid boundary in the grid system a bit tighter.

The method is to introduce depth map for each view. In

the dataset, the authors do provide the depth map (Fig. 1)
for each view. In realty, when taking each 2D view, we can
add a depth sensor to get the complementary depth image.

Fig.1 depth map of a 2D view in synthetic vase dataset

Therefore, for each pixel in one view, we can get its 3D

position in the world system via,

!
𝑋
𝑌
𝑍
% = 𝑀!" (

𝑥
𝑦
1
,

where 𝑀!" is the camera matrix of the view.

Then the 3D point in the grid coordinate system is,

!
𝑋′
𝑌′
𝑍′
% = 𝐻 !

𝑋
𝑌
𝑍
%

where 𝐻 is the transformation matrix from world system to
grid system.

 After computing all 3D points for one view in the
synthetic vase dataset, we visualize it in Fig. 2.

Fig. 2 All 3D points corresponding to one view

When we integrate all the 3D points from all views, we can
get a much complete view of the whole 3D scene, as show
in in Fig. 3.

Fig. 3 All 3D points from multiple views and the bounding
box that enclose all 3D points

Note that the authors make the cube assumption hardcoded
in their implementation. To allow generic rectangle 3D
voxel grids, I reimplement the mapping function between a
2D view and its mask on the 3D voxel grid.

2.2. 2D view subsampling

In the paper, the authors use about 300 to 400 views to
train a specific 3D object. As shown in Fig. 4, the camera
army forms a sphere like array that encompasses the object.

Fig. 4 A camera army surrounding the scene

227

Fig. 5 is a visualization of each camera position and
orientation in the army. We can observe that the cameras
forms a dense sphere, yet the neighbor views should cover
significant overlapping areas. Therefore, we could
subsample only one or a few among neighboring cameras
to reduce redundancy (method 1).

Fig. 5 Visualization of camera pose and position

Also, starting from the 3D object center, the cameras

locate gradually away from it. Thus we can subsample
cameras in different distance from the object center. Just
like a satellite covering on the earth: the higher of the
satellite, the more coverage it has but with reduced
resolution. So it is a trade-off between coverage and details.
We propose method 2 to sample cameras along the distance.

Method 1: I use convex hull algorithm (implementation
in SciPy) to get the shell of the camera army sphere. The
byproduct of this is the facets that every three vertexes lie
on. This is an ad hoc to group different cameras into
neighboring clusters. The subsampling method is as
follows:

a) Initialize two sets Q0 and Q1, where Q1 is the set
composed of camera views we keep after
subsampling and Q0 is the set composed of camera
views we discard

b) for each facet on the convex hull, get the three
vertexes as candidates

c) remove the candidates that are already in Q0 and Q1
d) if there are still candidates left, sample one of them

and put it into Q1 and the rest into Q0
e) return Q1 as the sampled camera views

This procedure can be done multiple times to generate

different level of sparse camera views, shown in Fig. 6.

Fig. 6 convex hull (each vertex is a subsampled camera)

of 479, 232, 142 and 67 views

Method 2: To subsample cameras according to the
distance of each camera from the object center, I use
multi-layer convex hull to approach this problem. For all
cameras, we regard the cameras on the convex hull as the
most outside ones. They form the layer with largest
distance. Then we remove them and get the convex hull of
the remaining cameras. The cameras on the new convex
hull form the second layer and so on. Essentially this
process is like peeling an onion, which provides us an
effective way to traverse all the cameras. See Fig. 7.

228

Fig. 7 convex hull (each vertex is a camera) with

different distant from object center

3. Experiments
Experiment 1: Tighter voxel boundary initialization

The dataset we are using is the synthetic vase dataset

(link) provided by the author. By running the boundary
estimate code [5], we have the voxel grid boundary as -
0.205 < x < 0.205, -0.500 < y < 0.500, -0.204 < z < 0.204.
With the volume of voxel decrease from 8 to 0.16 (50 times),

we can increase voxel resolution by 50 while maintaining
the same level of computation.

Fig. 8 shows the model visual performance trained with

better voxel grid. Comparing with baseline, the new render
view (the third column) can recover more details to the
ground truth. This is due to the voxel grid represent the
scene more efficiently.

Fig. 8 Visual performance of the two proposed

improvements. From left to right: ground truth of a new
view, new view rendered by baseline DeepVoxel, new view
rendered by improved voxel grid boundary and new view
render by model trained with reduced number of views.

Experiment 2: Reduced number of training views

I subsample the cameras with 142 views using method 1

in Sec. 2.2. The remaining training parameters are the same
as the baseline. As shown inn Fig. 8, the new render view
(the fourth column) has comparable visual performance as
the baseline.

4. Conclusion
In this project, I make two improvements over the

baseline DeepVoxel. Inspired by the space carving method
in the class, I better estimate the voxel grid boundary and
thus learn a more efficient model to render new views. Also,
I reduce the redundancies across camera views and
subsample them to retrain the model. The experiments
show that the proposed subsampling ad hoc results in
comparable visual performance with the baseline but using
a much smaller number of training views.

229

References
[1] Sitzmann Vincent, Thies Justus, Heide Felix, Niesner

Matthias, Wetzstein Gordon and Zollhofer, Michael,
DeepVoxels: Learning Persistent 3D Feature Embeddings,
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2019

[2] Hartley Richard and Zisserman Andrew, Multiple View
Geometry in Computer Vision, 2003, Cambridge University
Press, isbn 0521540518.

[3] https://github.com/vsitzmann/deepvoxels
[4] http://web.stanford.edu/class/cs231a/lectures/lecture8_volu

metric_stereo.pdf
[5] https://github.com/yuanzheng625/ImprovedDeepVoxel

