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Abstract

This paper presents an unsupervised Video Object Seg-
mentation algorithm that incorporates an object salience
heuristic. The algorithm is a modification of the DAVIS
2020 competition winner FrameSelect. The FrameSelect
algorithm is analyzed and we qualitatively identify weak-
nesses in the salient object selection process based on exam-
ination of the output predictions within a validation dataset.
We evaluate several approaches for improving object se-
lection and select an approach incorporating a detector
based on classical computer vision techniques called Ro-
bust Background Detection. The detector output is used to
weight candidate masks and exclude low-salience masks.
An experiment is conducted varying the mask salience
threshold used and results are compared using the Jaccard
Index and Contour Accuracy figures of merit defined by the
DAVIS 2020 competition. The mask salience heuristic does
not improve performance, but some analysis is done to ex-
amine why. Further improvements are proposed to augment
mask selection in the unsupervised Video Object Segmenta-
tion problem by considering it as a probabilistic tracking
problem.

1. Introduction

Video object segmentation (VOS) is a process to label re-
gions in a video into distinct objects, maintaining the label-
ing over the course of the video [8]. VOS is a key building
block for robotics, augmented reality, and other disciplines
where scene understanding is a prerequisite for further pro-
cessing.

The Unsupervised VOS (UVOS) formulation is a par-
ticularly new and challenging VOS problem [1]. The
most commonly studied variant of VOS so far has been
sipervised/one-shot VOS, which relies on an initial human
labeling at the start of a video to bootstrap the tracking.
One-shot simplifies the problem as the supervised label-
ing usually excludes background objects and only tracks
the most salient objects within the scene. UVOS is harder
because the process must also decide on salient objects to
track over the course of the video.

The key challenges to solve in UVOS are salience, track-
ing and permanence [3]. The salience problem as described
above requires identifying the most relevant objects as a hu-
man would recognize them. Tracking means following spe-
cific object instances (e.g. a specific basketball player in
a basketball game) despite changes in pose, similar looking
object instances, and occlusions. Permanence is specifically
about tracking an object despite partial or complete occlu-
sion by other objects in the video or the edge of the video
frame.

In this work we build upon a prior UVOS method called
FrameSelect [3][10], which bootstraps masks to track us-
ing Mask R-CNN [4], spatially and temporally tracks them
throughout a video using self attention [7], and updates for
mask drift with conditional re-initializations of the Mask R-
CNN object mask based on the results of a classification
network called Selector Net.

We analyze deficiencies in the segmentation from a
dataset of challenging scenarios containing occlusions,
rapid motion, and many object instances. We then iden-
tify a weakness in object salience, likely due to poor mask
selection from the Mask R-CNN candidates due to sparse
training data.

We incorporate a new mask selection process based on
Robust Background Detector (RBD) [13], an algorithm
based on classical computer vision approaches, and eval-
uate our new pipeline using the DAVIS evaluation criteria
and our own qualitative analysis.

2. Related Work
We build upon the FrameSelect method which was the

top scoring method (as measured by J and F scores) in the
DAVIS 2020 Unsupervised challenge. This method uses
a combination of mask evolution using unsupervised self-
attention with a Space-Time Memory (STM) network, mask
generation with Mask R-CNN, and mask evaluation with
hand-crafted features and a supervised fully-connected net-
work.

The components of FrameSelect work to compliment
each other. STM is the key VOS algorithm but was built
for supervised VOS and does not create mask proposals re-
quired for UVOS. Mask R-CNN creates high quality mask
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proposals but does not use temporal data, so it does ex-
tremely poorly with the tracking problem of VOS. The
hand-crafted features and neural network mask evaluator
connect the two mask sources and optimize them for each
frame.

The hand-crafted feature of FrameSelect measures re-
gion similarity (similar to the J metric although not normal-
ized for mask size) between a candidate mask and the mask
from the last frame, and is combined with a supervised
fully-connected network to decide whether to integrate an
evolved STM mask or a new Mask R-CNN proposal mask
into the current frame. The region similarity feature seems
biased towards including large mask candidates as it is not
normalized like the J metric, and the Mask R-CNN proposal
has no temporal data and is vulnerable to tracking and oc-
clusion errors between frames. The Mask R-CNN proposals
are also just the top 10 most confident instance/mask pro-
posals in the frame over a 10% confidence threshold, which
is extremely sensitive to non-salient but highly confident de-
tections like bystanders in sporting events and household
objects in indoor settings.

The STM method for mask evolution is from the 2019
DAVIS competition, in the ”semi-supervised” track which
provides initial image labelings. The method two deep neu-
ral encoders, a ”memory encoder” and a ”query encoder”,
to encode spatio-temporal mask data and retrieve it from a
key-value store respectively. The network is run in a ”for-
ward” direction where the initial labeled frame is fed into
the encoder, then the query encoder encodes the second (un-
labeled) frame, and the decoder predicts the evolved object
masks from the encoded initial frame. This process is re-
peated for each frame in the video, with the look-behind of
the decoder relying on a buffer of encoded past images com-
bined with a ”Space-Time Memory Read” which selects
the most relevant past encoded image from the buffer. The
Space-Time Memory Read algorithm and the key generated
by the memory and query encoders are the self-attention
mechanism of the method.

The STM algorithm has an interesting hyper-parameter
which was not well-explored in 2019 competition. Ide-
ally, all past frames would be stored and evaluated to find
the right frame to decode from, but due to memory con-
straints and the authors’ goal of creating a fast real-time
VOS method, the reference implementation only stores and
evaluates every 5th frame of the video. The authors report
an absolute improvement of 13% using every 5th frame
compared to just using the initial frame of the video, and
an absolute improvement of 10% using the last frame plus
the first frame of the video. DAVIS video sequences are
almost all 60 frames are less, so it is possible that discard-
ing 80% of frames hurts STM performance, particularly for
fast-changing videos.

Another interesting alternative or compliment to using

R-CNN masks to generate candidate masks is to incorpo-
rate optical flow data. This idea is mature, with numerous
approaches dating back over two decades. A particularly
interesting and simple approach is computing relative mo-
tion of objects from cumulative optical flow [11] through
a video sequence and selecting objects with high relative
motion. This method should be robust to camera motion
and does not make strong assumptions about the qualities
of salient objects besides that they should have high relative
motion in a video sequence. Frame-to-frame motion from
optical flow has has also been directly used in the Video
Object Segmentaton task to compute salient masks, how-
ever, under an ablation study [2], the optical flow data only
improved performance by 3% relative to just relying on R-
CNN segmentation.

3. Approach
3.1. Qualitative Analysis Tool

We have created a visualization tool to qualitatively an-
alyze VOS predictions from the baseline FrameSelect algo-
rithm. The tracking and mask evolution of the algorithm
seems excellent, however, it often tracks extraneous objects
in the foreground/background (see Figures 2 and 3). From
our visualizations we decided to add additional means of
saliency detection to the FrameSelect pipeline to remove
extraneously tracked objects. There are also issues with
mask tracking during dramatic changes in pose (see Figure
4) which may be addressed by tuning the STM lookback
hyper-parameter, but we did not explore this yet.

3.2. Augmenting FrameSelect with Salience

In our proposed improvement to FrameSelect we incor-
porate the Robust Background Detection (RBD) method
[13]. This method maximizes a heuristic called the Bound-
ary Connectivity which is an ratio of how many pixels in
an image region (arbitrarily chosen) on the image bound-
ary/edge to how many pixels are in the image region. Com-
puting Boundary Connectivity of arbitrary combinations of
pixels is not computationally efficient, so the image is first
segmented into superpixels, which are k-means clusters of
pixels. These superpixel boundary connectivity values are
combined with contrast and smoothness heuristics and opti-
mized with a least-squares method to create a saliency mask
with foreground objects highlighted.

The grouping, contrast, and smoothness heuristics incor-
porated in the RBD algorithm seem to work well for sin-
gle foreground images (see Figure 5). However, the DAVIS
dataset is intentionally constructed with challenging scenes,
and the results shown do not necessarily generalize over
other more challenging samples from the data.

We use RBD to improve the initial mask selection and
new candidate mask selection. A salience heuristic is com-



Figure 1. FrameSelect block diagram (Garg et. al 2020)

Figure 2. High-confidence but low-salience plant masked in fore-
ground.

Figure 3. High-confidence but low-salience audience members in
background.

puted based on the average RBD salience value over a de-
tected R-CNN mask, and the heuristic value is compared
to a fixed threshold to winnow the candidate masks pro-
vided by Mask R-CNN. This should improve the J metric
and qualitatively reduce the number and size of false posi-
tive segmentations. The threshold is a tuning parameter and
we examine two different thresholds (0.5 and 0.95) to see if
there is any difference in performance.

The salience heuristic is calculated as follows, where M

Figure 4. Fast-changing pose of the person in the middle causes a
poorly evolved mask.

is a candidate mask, and p is a pixel in the mask:

S(M) =

∑
p∈M rbd(p)

|M |

and the mask is included if S(M) > Sthreshold. RBD masks
are calculated for all DAVIS data in a preprocessing step.

As part of our work, we have partially reproduced the
FrameSelect results. Although the FrameSelect implemen-
tation is available on GitHub, it is not actually provided in a
runnable state. First, the codebase first expects that DAVIS
data is pre-processed with a Mask R-CNN implementation
which is not provided. We have created a small pipeline
to create Mask R-CNN segmentation images from the input
DAVIS data using the Detectron2 library [12]. The spe-
cific Mask R-CNN model used was the Feature Pyramidal
Network (FPN) backbone trained on the COCO model (De-
tectron2 model id 137849458), with a minimum detection
confidence threshold of 10% maximum of 10 objects de-
tected per frame.

For our RBD augmentation of FrameSelect we have used
an RBD implementation from GitHub with some modifica-
tions [5]. We create a script to transform the DAVIS data
into RBD saliency fields as seen in Figure 5. The saliency



Figure 5. Sample output from RBD preprocessing. High-salience pixels are brighter.

field was normalized so that minimum saliency had 0 inten-
sity and maximum saliency had 255 intensity.

The RBD data was fed into the modified FrameSelect
algorithm. Two values Sthreshold were tested for thresholding
salient masks, 0.5 and 0.95.

Method J F
FrameSelect (Orig) 52.9 63.3
FrameSelect (Ours) 49.2 59.5
FrameSelect+S0.5 48.6 59.0
FrameSelect+S0.95 48.0 58.0
UnVOST 54.0 62.0
KIS 50.0 58.3

Table 1. Results on the DAVIS 2020 Unsupervised test-dev
dataset.

4. Results
4.1. Dataset Information

We participate in the Unsupervised Video Object Seg-
mentation challenge of the Densely Annotated VIdeo Seg-
mentation (DAVIS) 2020 competition [1]. The competition
provides 60 training, 30 validation, and 2x30 test sequences
of RGB 854x480 image stills from videos. No camera cal-
ibration data is provided. The training and validation sets
provide ground-truth human labeled annotations, whereas
the two test sequences have hidden ground-truth data which
is only used by the competition for evaluation on the Co-
daLab platform. Although the competition leaderboard is
now closed to new entrants, we can still submit our results
for grading on CodaLab.

4.2. Measurements Methodology

We use the DAVIS evaluation metrics [1] for assessing
our algorithm’s performance: the region-based segmenta-
tion similarity Jaccard index (J), and the contour accuracy
(F). The Jaccard index measures overlap by taking the num-
ber of pixels in the intersection between the predicted M
and true mask G, and dividing it by the union of the two (so

Figure 6. Overlay on input image.

the maximum value is for a complete intersection of identi-
cal masks): J = M∩G

M∪G . The contour accuracy measures the
precision and recall between contour (exterior) points of the
predicted and true masks with bipartite graph matching (PC

and RC respectively), and computes the ratio F = 2PCRC

PC+RC
.

These metrics are computed across all objects in each
frame of each sequence and averaged across the sequence.
More formally, for a metric M and a video sequence S, the
mean performance m(M,S) is:

m(M,S) =
1

|Os|
∑
o∈OS

1

|Fs(o)|
∑

f∈Fs(o)

M(mf
o , g

f
o )

where OS is the total set of objects in the sequence, o is an
object in OS , Fs(o) is the frames containing o, and mf

o , g
f
o

are the predicted and true masks respectively of that object
in that frame. The mean J and F are the main metrics for
each sequence. The DAVIS authors provide an implementa-
tion of the evaluation algorithms, which we have graciously
used [9].

We also qualitatively evaluate the segmentation per-
formance by examining false-positive and false-negative
masks from overlays of the predicted masks against the in-
put sequences using a visualization script that we have cre-
ated (Figure 6).

We have quantitatively measured the performance of the
baseline FrameSelect implementation and the implementa-
ton with our saliency heuristic using the CodaLab evalua-



tion server. As mentioned previously, the CodaLab server
was set up to facilitate the DAVIS competitions but is still
open to evaluate new implementatons. Via the CodaLab
server, we evaluate the J and F figures of merit on a test
dataset for which the ground truth data is hidden from the
public.

We also specifically examine the performance in several
training sequences that were qualitatively identified as per-
forming poorly with the baseline FrameSelect implementa-
tion. The performance is evaluated using given ground-truth
data and using the J and F evaluation code provided by the
DAVIS organizers [9].

Method Sequence J F
FrameSelect (Ours) HorseJumpLow 85.2 96.0
FrameSelect+S0.5 HorseJumpLow 85.2 97.0
FrameSelect+S0.95 HorseJumpLow 85.2 97.0
FrameSelect (Ours) Sheep 78.0 86.9
FrameSelect+S0.5 Sheep 78.5 87.1
FrameSelect+S0.95 Sheep 78.5 87.1
FrameSelect (Ours) DogGooses 76.8 89.5
FrameSelect+S0.5 DogGooses 76.8 89.5
FrameSelect+S0.95 DogGooses 76.8 76.8
FrameSelect (Ours) Butterfly 0.1 0.02
FrameSelect+S0.5 Butterfly 63.2 71.5
FrameSelect+S0.95 Butterfly 63.2 71.5

Table 2. Results on the DAVIS 2020 Unsupervised training and
test sets for select sequences.

5. Conclusion
Our salience heuristic for incorporating new masks did

not improve mean performance compared to the baseline
FrameSelect implementation on the DAVIS test set. The
heuristic we implemented relies on contrast and a ratio of
area to edge perimeter and does not work well on the DAVIS
dataset which contains sequences specifically designed to
frustrated simple approaches with confounding foreground
objects. In specific sequences that fit our assumptions of a
simple foreground/background like the Butterfly and Horse-
JumpLow sequences, the RBD heuristic is indeed able to
achieve improvements, sometimes ones which are dramatic.

This corresponds with the results of [2] which used op-
tical flow data to augment segmentation masks and also
achieved a very minimal average improvement in perfor-
mance relative to their segmentation baseline as discovered
in ablation. Foreground objects still sometimes confuse our
RBD heuristic. Setting the threshold high enough is able
to decrease false positives in some sequences (see Figure 7
and Table 2) but also sometimes misses true positives across
the entire DAVIS dataset. In aggregate the effect is slightly
detrimental.

It is also worth considering if the measurement method-
ology is to blame and not the algorithm (to hate the sin
and not the sinner, so to speak). It seems that the J met-
ric is much more sensitive to false negatives than to false
positives, as seen in the performance difference on Horse-
JumpLow vs. Butterfly, where there is a slight performance
improvement from excluding a false positive and a huge
performance improvement from including a falsie negative.
This follows naturally from the defintion of the J metric,
where true positive data only appears in the numerator, and
hence false negatives always have a zero numerator. In a
follow up experiment, it would be worth exploring other
figures of merit which are more sensitive to false positives.

Setting aside issues of measurement methodology, there
are several deficiencies that could be addressed to improve
the performance of our algorithm and of FrameSelect as
a whole. First, although our algorithm affects when new
masks are included in the sequence to be tracked, masks
are never dropped from tracking. It is likely that accuracy
cumulatively decreases over sequence length as more non-
salient objects are tracked over the course of a sequence.
This could be explored in a subsequent experiment and used
as motivation for more sophisticated mask management.

Second, and more importantly, salience seems to depend
on a confluence of factors, some of which are spatial, others
temporal, and yet others semantic. It is unlikely that any one
heuristic can capture the salience of an object. The frame-
work within FrameSelect uses simple conditional logic to
include new objects but the problem can be framed more
generally as a probabilistic tracking and predicting problem
similar to [6]. We can use a Kalman filter to elegantly incor-
porate multiple signals, and also significantly, incorporate
uncertainty estimates into our mask updates.

If masks detected within each frame of a sequence are
treated as a set of observations, augmented with other data
such as depth (perhaps recovered from monocular vision
estimates), relative motion, semantic importance, we can
come up with an initial prediction of whether an object
is salient, including a confidence estimate. Then, at each
frame, we can update our prior beliefs and update our
salience estimate and confidence based on changes in the
observed data and our process model. If the confidence
achieves a high enough level, we can act on our prediction
and either add or remove the mask.

This work shows that it is possible to improve Unsuper-
vised Video Object Segmentaton performance if certain as-
sumptions are made about scene structure to help guide ob-
ject mask salience, but at the cost of generality. Further
work focused on incorporating multiple beliefs and a for-
mal process model of salience posed as a Kalman filtering
problem may further help improve performance.

Code for the project is available in a private repository at
https://github.com/cornmander/cs231a-project-uvos.



Figure 7. FrameSelect-Original vs. FrameSelect-S95 output. The non-salient object in the foreground is excluded in the FrameSelect-S95
output. In particular the butterfly in the bottom pair is completely ignored by FrameSelect-Original but tracked in FrameSelect-S95, which
leads to a much better score on this sequence.
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