
CS231A Final Project Report: Set AI

Aditi Jain
ajain4@stanford.edu

Winter 2021

Abstract

SET is a card game where the goal is to match shapes
and patterns to form groupings, or ”Sets”, of three cards
which conform to a special property. Humans are extremely
quick at recognizing visual similarities between the SET
cards, making the game a great candidate for artificial in-
telligence. In this paper, we leverage the full computer vi-
sion toolkit, from low-level image processing such as edge-
detection to deep learning convolutional neural networks.
We observe that an AI is indeed able to play SET with the
accuracy and speed comparable to that of a human.

1. Introduction

SET[1] is a card game with 81 different cards. Each card
has a unique value (of three possible values) across four
different attributes (34 = 81). The four attributes are color,
shape, fill, and number. color takes on the three colors red,
green, purple, shape takes on diamond, oval, squiggle, fill
takes on solid, striped, none and finally number takes on 1,
2 and 3. Players compete on a 3 x 4 grid of SET cards to
find the most Sets, where a set consists of three cards which
are either all the same across each attribute, or all different.
This criteria for a valid set is called the magic rule.

For example, the three cards below form a Set since they
are all different along color, shape, fill, and number.

Figure 1. These three cards form a Set since they are either all
different or all the same across the four dimensions (color, shape,
fill, number).

As sets get removed from the game board, the spaces are
backfilled with new cards from the deck. The game finishes

when there are no more cards in the deck and no more Sets
can be found on the board. The player with the most Sets
wins.

1.1. Problem Statement

The problem at hand is to teach an AI to play SET. This
entails segmenting individual cards from the twelve card
game board, classifying the color, shape, fill, and number,
and finally correctly forming sets across cards based on the
magic rule.

1.2. Success Criteria

We evaluate the AI approach on (a) the end-to-end latency
and (b) accuracy of the final Set. For reference, an expe-
rienced player can find sets in roughly 3-5 seconds, based
on personal experience. In this paper we will also share the
latency and accuracy of the individual steps (segmentation,
classification, and set forming).

2. Background and Related Work
Image segmentation is the process of extraction objects of
interest from an image. Our use case of extracting a playing
card is on the simpler end of segmentation problems, as
the card is always shaped as a rectangle and its white color
clearly stands out against a dark background. Segmentation
is well-studied and libraries such as OpenCV expose out of
the box methods to extract regions of interest. In this paper,
we explore both out of the box methods and segmentation
implemented from scratch.

Image classification via Convolutional Neutral Networks is
the process of predicting the label for a given image, given
a vast amount of labeled training data. In this paper we
compare transfer learning via MobileNetV2[2] with a CNN
built from scratch.

Finally, let us briefly touch on two tried approaches,
published as blog posts, for solving SET via artificial
intelligence. In [3], the author used cv.findContours
for segmentation. The author then attempted to predict

1

each individual attribute (color, shape, fill, number) with a
custom technique. For example, they wrote an algorithm to
distill the average color, and leveraged OpenCV’s ORB[4]
to detect keypoints forming the shape. The author did not
comment on the accuracy of the approach.

In [5], the author used out of the box computer vision li-
braries to extract the cards from a black matte surface. The
author then curated a training dataset of 160 images per card
with various lightings and angles, and used it to train a CNN
model to predict the given card. The model reached 99% ac-
curacy. This approach is more along the lines of what you
will see in this paper, but with a twist of generating training
data via augmentation.

3. Technical Approach
We break down the problem into four major technical

sub-problems: card segmentation, training data generation,
card classification, and Set formation.

3.1. Card Segmentation

Given an arbitrary SET game board (see below), we need
to extract each individual card for downstream classifica-
tion.

Figure 2. An example Set game board. Card extraction requires
segmenting each card.

3.1.1 Segmentation via cv.findContours

In the first approach, we used the following algorithm:

1. Convert the image to grayscale.
2. Threshold the image to make the objects more distinct.
3. Run cv.findContours.
4. Extract the cards as the 12 largest contours by area.

We will discuss the results in a subsequent section.

3.1.2 Segmentation via from Scratch

To understand more what was going on behind the scenes
of findContours, I implemented card extraction by
scratch:

1. Convert the image to grayscale.
2. Threshold the image to make objects more distinct.
3. Run Canny Edge detection[6] (implemented by hand).

(a) Apply smoothing to remove noise.
(b) Calculate image gradients to highlight the edges.
(c) Use non-maximum suppression to thin the edges.

4. Fit the edges to lines using Hough[7] transforms.
5. Filter out lines which are not horizontal or vertical.
6. Compute intersection points. These points form the

corner points of the cards.
7. Extract the cards!

In the Results section, we will show the visualizations
of the intermediate steps as well a comparison of the final
result against cv.findContours.

3.2. Training Data Generation

Before training a classifier to identify each individual card
as one of 81 classes, we need to generate training data.
I started by taking a picture of each individual card and
giving it a unique class label between 0 and 81. To generate
this numerical label, I utilized the Base 3 mapping between
a 4-digit string e.g. ”1210” and a decimal number between
0 and 80. The 4-digit string specifies the 4 attributes and
the value at index i represents the value taken on by ith
attribute. See class to string in the accompanying
Colab notebook.

From each card’s picture and corresponding model label, I
generated 300 copies of each card with random lighting and
geometric transformations. While I had first experimented
with random rotation and scaling in addition to the follow-
ing transformations, I found that the model had a difficult
time learning these variations. I was ultimately able to
remove these transformations with no cost to performance
during inference.

Algorithm 1: Training Data Augmentation
gamma = [0.5, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5]
shears = [-0.03, -0.02, -0.01, 0, 0.01, 0.02, 0.03]
flips = [0, 1, -1]
sigmoid cutoffs = [0.2, 0.4, 0.5, 0.6]

Random exposure change
image = exposure.adjust gamma(image,
random.choice(gamma))

Random Sigmoid Correction
image = exposure.adjust sigmoid(image,
random.choice(sigmoid cutoffs))

Random Flip (or no flip)
flip = random.choice(flips)
if flip ≥ 0: image = cv.flip(image, flip)

Random Affine Transform Shear.
affine = transformȦffineTransform(shear =
random.choice(shears))
warped = transform.warp(image, inverse map=affine,
preserve range=True)

We ran this algorithm 300 times for each of the 81 cards,
yielding a training data set of 24k images.

3.3. Card Classification

To classify the SET card as one of 81 different classes,
I tried the following two approaches, eventually settling on
the second. Both used 80/20 split between training and val-
idation.

3.3.1 Classification via Fine-Tuning on a Pre-Trained
Model

As I was initially aiming to deploy a model on device to play
SET in real-time, I leveraged MobileNetV2 [2] trained on
ImageNet as the weights for the CNN, with 40% dropout
and an additional layer for softmax. Below is the model
summary.

Figure 3. Image classification via MobilenetV2.

3.3.2 Classification via from-scratch CNN

I compared the approach above with the convolutional neu-
ral network structure used in [5] which was pulled from
Chapter 5 of Deep Learning with Python[8]. The network
stucture is shown below.

Figure 4. Image classification via From-Scratch CNN.

3.4. Set formation

The final step is straightforward; once we have the pre-
dicted class for each card on the game board, we iterate
through all combinations of three cards and check if the
magic rule criterion is met. As the board contains 12 cards,
there are a total of 12c3 = 220 combinations to check, which
is computationally tractable for our use case. I find that hu-
mans generally do something smarter than considering each
combination independently; a common shortcut is to look
for ”minorities” on the board - e.g. there may be only one
card with two objects - and search through Sets which may
contain that card. As a fun extension, the problem of finding
disjoint Sets was proven to be NP-Complete by researchers
at Kyoto University and CUNY[9].

4. Results
Next, we will detail the results achieved by each of the tech-
nical subparts.

4.1. Card Segmentation

4.1.1 Segmentation via cv.findContours

The results of segmentation via cv.findContours is shown
below. Note that we we filter to the 12 largest contours by
area to remove the shapes captured on the cards.

Figure 5. Segmentation via cv.findContours.

This algorithm takes roughly 1 second to execute. The
code itself was very easy to implement, only requiring four
lines of Python!

4.1.2 Segmentation from Scratch

The major steps to this implementation are (1) Canny Edge
Detection, (2) Line fitting via Hough transforms, and (3)
Computing intersection points and extracting each of the 12
cards.

1. Canny Edge Detection
The notable parameters we used are (1) thresholding
the grayscale image at 160 and (2) applying a mean
filter for smoothing with 5x5 kernel size. The results
of Canny Edge Detection are shown below. This piece
of code took 5 seconds to execute.

Figure 6. Board after Canny Edge Detection.

2. Line Fitting via Hough Transforms
In the second step, we pass the black-and-white image
with the extracted edges to cv.HoughLines to
find lines parameterized by polar coordinates. We
use Hough Transforms as we have vertical lines

(infinite slope) in the image, which are not supported
by the Cartesian Coordinate System. The param-
eters we pass to cv.HoughLines are rho=1,
theta=np.pi/180, threshold=325. These
parameters were found through trial and error experi-
mentation.

The call to cv.HoughLines returned a total of 35
lines. After post-processing to remove lines which
were not nearly horizontal or nearly vertical (±15 de-
grees), we ended up with the following straight lines.

Figure 7. Straight Lines extracted via cv.HoughLines.

We then computed the intersection points between
each pair of horizontal and vertical Hough lines. These
points are visualized in yellow.

Figure 8. Intersection points (yellow) computed between vertical
and horizontal Hough Lines.

We then run a suppression step to merge intersection
points which are close together into a single point,
forming the corner of the card. See the merged points,

in aqua, below. Note that there are 48, as desired (12
cards x 4 corners).

Figure 9. Merged intersection points (aqua) computed between
vertical and horizontal Hough Lines.

3. Card Extraction
Finally, we need to group each of the 48 points to their
parent SET card. We use a simple algorithm that at-
tempts to extract each horizontal row of points at a
time (of six rows), and assign each successive pairing
of two points to the same card. After this step, we end
up with the following 12 contours!

Figure 10. Cards extracted (yellow) via Hough Transformations.

The total time to run Hough Line fitting and Card Extrac-
tion is 3 seconds, plus the additional 5 seconds for Canny
Edge Detection. Comparing this to cv.findContours,
we see that my implementation is much slower (8 seconds
compared to 1 second). I would attribute this difference
to inefficient calculations (e.g. for-looping through im-
ages rather than optimized matrix operations). Addition-
ally, looking at the output of cv.findContours vs my
Hough Lines approach, we also notice that the former finds
the exact contours of the card, while the latter chops up the

edges of the card in some cases. I could have gotten around
this by requiring a smaller number of points for fitting a
Hough line, but at the cost of picking up many other lines
in the image shapes contained within the cards. I find that
the non-exact crops does not affect the performance of the
downstream classifier.

4.2. Card Classification

As described above, we tried two models: MobileNetV2
pre-trained on ImageNet and a from-scratch CNN. Both
models used an 80/20 split and 300 images per class (of
81 classes). The former required 224 x 224 image size
while the latter required resizing to 150 x 150 pixels. Both
models were trained for 10 epochs and with 128 batch size.

The Test set is the set of 12 cards extracted from a single
SET game board, specifically the one displayed in preced-
ing sections.

Table 1. Model Accuracy of Card Classification

Training Validation Test

MobileNetV2 99% 99% 42%
From-Scratch CNN 99% 99% 92%

While both models seemed to have performed very well on
the augmented training and validation sets, MobileNetV2
performed significantly worse on new data, predicting only
5 of 12 cards correctly.

For a deeper comparison, here is the per-card prediction the
models applied to each card in the test set.

Figure 11. Predictions on Test Set from MobileNetV2.

Figure 12. Predictions on Test Set from From-Scratch CNN.

My guess is that MobileNetV2 was merely memorizing
the augmented training data set. For the final model, we
ended up choosing the From-Scratch CNN. Regarding in-
ference latency, MobileNetV2 took 3 seconds to run infer-
ence on 12 images, whereas From-Scratch took 2 seconds.

4.3. Testing with Various Game Boards

Finally, we run the end-to-end flow (Segmentation →
Classification→ Set Forming) through 4 game boards with
various cards, lightings, and background. For segmentation
we used the out of the box cv.findContours and for
classification, the From-Scratch CNN.

The metrics are shown below:

Table 2. End-to-End Metrics

Set Found? Was the Set correct? Latency

Board 1 Yes Yes 1.9 seconds
Board 2 Yes Yes 2.1 seconds
Board 3 Yes Yes 2.4 seconds
Board 4 Yes No 1.9 seconds
Board 5 Yes Yes 1.7 seconds

Based on just a few data points, the accuracy of the ap-
proach was 80% and average latency was exactly 2 seconds.

Here are two interesting failure cases which arose while
testing out the game boards:

Figure 13. In this ”failure” case, the segmentation step chose an
individual shape as the card, rather than the entire card. As it
turns out, the model still predicted this card and formed the Set
correctly!

Figure 14. In this real failure case, the model predicted the bottom
right card incorrectly as having stripes rather than having no fill.

An interesting extension to improve the accuracy would
be to choose the Set with the highest average model
confidence, rather than taking the first Set we find. In a real
game, a penalty is sometimes incurred when accidentally
picking up cards that do not form a valid Set, and in this
type of scenario we would want the AI to be fairly confident
about the Sets that it is choosing.

5. Conclusion

This paper proves the ability of an AI to play the card game
SET at a level comparable to that of humans. The approach
leverages out of the box image segmentation libraries in
OpenCV to extract the cards from the playing surface,
image data augmentation to build a robust classifier, and a
standard CNN architecture for card recognition. In 4 out
of 5 game boards, the approach correctly produced a valid
Set, with end-to-end average latency of 2 seconds.

I learned that image segmentation by hand is a difficult
problem. While extracting the edges of an image was fairly
straight forward, mapping these to crisp lines requires
intense post-processing to get exactly the lines we want e.g.
filtering out extraneous lines which are not horizontal or
vertical. It is great that out of the box approaches exist for
segmentation and that they are comparable or better to my
hand-tuned implementation.

The augmented training data application enabled me to
go deeper into image transformations, a topic that we had
touched on early on in CS231A. Generating random Affine
transformations was crucial to building a robust model.

To fully prove the ability of an AI to play SET, the most
crucial next step would be to deploy the algorithm to run
end-to-end on device. The model would then have to keep
up with the game board rapidly changing second by second
as other players find and remove Sets.

At this point, we may also want to try a combined segmenta-
tion + classification + Set formation model. We could even
leverage the existing models to automatically produce the
training data.

6. Resources
All code was implemented and run within the Colab GPU
environment. The GitHub Repository containing the note-
book is available here: https://github.com/aditij113/SetAI.

References
[1] Wikipedia contributors. Set (card game) — Wikipedia, the

free encyclopedia, 2021. [Online; accessed 10-Mar-2021].

[2] M. Sandler et al. Mobilenetv2: Inverted residuals and linear
bottlenecks, 2019. [Online; accessed 10-Mar-2021].

[3] Nicolas Hahn. Set card game solver with opencv and python,
2018. [Online; accessed 10-Mar-2021].

[4] OpenCV. Orb (oriented fast and rotated brief), 2014. [Online;
accessed 10-Mar-2021].

[5] Tom White. Understanding how deep learning learns to play
set, 2017. [Online; accessed 10-Mar-2021].

[6] J. Canny. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
PAMI-8(6):679–698, 1986.

[7] P. V. C. Hough. Machine Analysis of Bubble Chamber Pic-
tures. Conf. Proc. C, 590914:554–558, 1959.

[8] Francois Chollet. Deep learning with Python. Manning, 2018.

[9] Michael Lampis and Valia Mitsou. The computational com-
plexity of the game of set and its theoretical applications, Sep
2013.

	. Introduction
	. Problem Statement
	. Success Criteria

	. Background and Related Work
	. Technical Approach
	. Card Segmentation
	Segmentation via cv.findContours
	Segmentation via from Scratch

	. Training Data Generation
	. Card Classification
	Classification via Fine-Tuning on a Pre-Trained Model
	Classification via from-scratch CNN

	. Set formation

	. Results
	. Card Segmentation
	Segmentation via cv.findContours
	Segmentation from Scratch

	. Card Classification
	. Testing with Various Game Boards

	. Conclusion
	. Resources

