
View Morphing for 2D Animation

Cynthia Jia
Stanford University

CS231A Winter 2021
cynthiaj@stanford.edu

Abstract

Traditional 2D animation requires manual interpolation
between sparse keyframes to create intermediate images
called ”inbetweens.” I explore the application of view mor-
phing to create these in-betweens through the process de-
scribed in Seitz and Dyer 1996 [8].

1. Introduction

Traditional 2D animation relies on the artist’s ability to
draw keyframes, or sketches of major snapshots in time. Be-
tween these keyframes, the artist must interpolate by draw-
ing intermediate frames, or “inbetweens,” as shown in Fig-
ure 1, to fill out the range of motion. I have found that if I
want to animate something simple like a rotating object, it
can become frustrating and time-consuming to draw these
intermediate panels.

I explore the use of view morphing to create the interme-
diate views between simple hand-drawn keyframes, hoping
to replace the laborious task of creating inbetweens by hand
with a more streamlined process, with the ultimate goal of
creating visually pleasing animated rotations of line-drawn
objects.

I experiment with pairs of personally hand-drawn
keyframes, in the style of a simple black and white line
drawings. I apply Seitz and Dyer’s 1996 three-step view
morphing process to these images, and then visually evalu-
ate the results.

2. Background and Related Work

2.1. Computers and Automatic 2D Inbetweens

Automatic interpolation for animation has been a topic
of interest for years, especially as the animated film indus-
try demands high quality and smooth animations in limited
production time.

Catmull describes the challenges that arise with solving
this problem [4]:

Figure 1. An example of inbetweens used for a 2D character.

The principle difficulty is that the animator’s
drawings are really two dimensional projections
of three dimensional characters as visualized
in the animator’s head, hence information is
lost...Efforts to overcome this by drawing skele-
tons or increasing the number of overlays require
more manual intervention thereby offsetting the
gains of using the computer.

Like Catmull mentions, Carvalho et al propose the use of
skeleton-like guide curves drawn by artists to automatically
interpolate between poses of a figure [3].

Miura et al and Sun et al avoid extra manually-drawn
skeletons by modelling characters as spline curves and in-
terpolating between them automatically [6] [9]. However,
this limits what animators can draw, since for good perfor-
mance everything in their scene would have to be restricted
to a spline curve.

In a different vein of thinking, Xing et al present an in-
terface that uses past frames to predict a future shape in the
next frame, using a global similarity based on fuzzy corre-
spondences [10].

Products such as CACANi also exist, offering automatic
inbetweens as a service [1]. The technical implementation
of the product is unclear, but it aims to tackle the same prob-
lem I am approaching here.

1



Figure 2. Simple image morphing (top) may distort straight lines,
while view morphing (bottom) preserves them, yielding a more
accurate result.

2.2. View Morphing for Automatic 2D Inbetweens

While many papers utilize features like skeletons,
splines, and other tactics, none of them mention view mor-
phing. I am intrigued by the way that Seitz and Dyer com-
pare simple image morphing with view morphing. They
note that plain image morphing, without considering cam-
era or view geometry, may warp straight lines, while view
morphing preserves these lines [8]. You can see this in
an image from their paper in Figure 2. Furthermore, the
way novel views are generated between two initial views
reminds me of the way in which inbetweens are generated
between keyframes.

While correspondences must be selected for view mor-
phing, and this could act as an additional pain point like
Catmull described above, I wanted to explore the avenue,
which could potentially output interesting results.

Seitz and Dyer have written a series of works on the topic
of view morphing, including an earlier paper focused on
rectification (Physically-Valid View Synthesis by Image In-
terpolation) and two later works which are more focused
on the entire view morphing process (Toward Image-Based
Scene Representation Using View Morphing and View Mor-
phing). All of their example images include photographs
from real life, or physically realistic 3D models, so I am
curious as to how the process will treat 2D line drawings
which may not follow 3D physical rules.

Ji et al build upon Seitz and Dyer’s work by applying
CNNs for dense correspondences, creating more realistic
results [5]. However, keeping time frame in mind, I aim
to focus on the basic method described in Seitz and Dyer’s
1996 paper View Morphing.

3. Technical Approach

I will follow the view morphing process described in
Seitz and Dyer 1996 [8], with the following steps:

1. rectify or pre-warp corresponding images

2. interpolate or morph between rectified images to get
an intermediate image

Figure 3. View Morphing in Three Steps. (1) Original images I0
and I1 are prewarped to form parallel views Î0 and Î1. (2) Îs is
produced by morphing (interpolating) the prewarped images. (3)
Îs is postwarped to form Is

3. post-warp the intermediate image to get our final re-
sult.

To visualize this process, see figure 3 taken from Seitz
and Dyer’s paper [8].

Let us refer to our two keyframe images as I0 and I1.

3.1. Pre-warping

Pre-warping refers to the rectification of corresponding
images, where the resulting image planes are parallel. To
rectify our images, we require two homographies H0 and
H1 that will transform points in I0 and I1 to points on par-
allel image planes.

Since 2D drawings do not exist in real geometric space,
we do not know any of the camera geometry, or the intrin-
sic or extrinsic camera parameters. As a result, we need
to find corresponding image points and use the eight-point
algorithm in order to pre-warp the images.

3.1.1 Finding Correspondences

Point correspondences are found manually through an
OpenCV program, where the user can click points on an
image to mark them with a crosshair and number, and
the respective coordinate is printed for saving, as seen in
Figure 4. The code for this program can be found in
get coords.py, located in the GitHub linked in the ap-
pendix.

2



Figure 4. Simple drawings with clicks marked with OpenCV,
whose coordinates were printed to the terminal.

3.1.2 Finding H0 and H1

First we find the fundamental matrix F using the eight point
algorithm on the corresponding image coordinates. I use a
normalized eight point algorithm which first shifts the ori-
gin of correspondences to their centroid, and scales them so
that they have similar magnitudes.

To find H0 and H1 which rectify the corresponding im-
ages, we can then use F to compute epipolar lines for each
correspondence, and find the epipoles. Once we have the
epipoles, we can create some transformations that combine
translation, rotation, and a transform to bring the epipole to
infinity.

A more detailed explanation of this process is described
by Seitz and Dyer in the appendix of View Morphing
[8].

3.2. Morph

To find an intermediate image Is, we need to interpo-
late between rectified points. To do so, I use Beier-Neely
field morphing as this is the method used by Seitz and Dyer
[8]. Beier-Neely field morphing differs from simple cross-
dissolving of image values in that it uses interpolated fea-
ture lines to first morph both images to an intermediate
shape, before cross-dissolving [2]. An illustration of this
can be seen in Figure 5

3.2.1 Beier-Neely morphing

We will be interpolating or transitioning from one rectified
image to another, based on a interpolation ratio t. We will
use corresponding feature lines, which are simply connec-
tions between correspondence points in our rectified im-
ages. To prevent excessive morph calculation time, a subset
of all the possible feature lines will be chosen.

We will first prewarp both rectified images to an interme-
diate shape, and then cross-dissolve between the two pre-
warped images to get the final intermediate image.

Let P1 and Q1 be endpoints of a feature line in the first
rectified image, and let P2 and Q2 be endpoints of a fea-
ture line in second image. Beier-Neely morphing works by
first interpolating feature line positions in the two rectified

Figure 5. An example of two images first being warped to inter-
mediate shapes on the lower left and right before interpolating to
reach the bottom middle image, which is more convincing than the
simple cross-dissolve seen in the top middle.

Figure 6. Offset u and v for a single feature line in Beier-Neely
morphing [2]. In this case the ”Destination” is our prewarp image,
and our ”Source” is either of the original rectified images.

images to get intermediate lines, using the following inter-
polation:

P = (1− t)P1 + tP2

Q = (1− t)Q1 + tQ2

where P and Q are interpolated endpoints, and t is the
interpolation ratio.

With the case of one interpolated feature line, we can
then calculate the distance of every pixel X in the interme-
diate image to that feature line PQ, and use this distance to
calculate offsets u and v as shown in figure 6. u and v can
be used to find the pixel to sample from in the ”Source Im-
age” as you see in figure 6; in this case the ”Source Image”
is either of our rectified images.

In the case of multiple feature lines, which is what I will
use in my process, we need to calculate u and v for every
pixel in the intermediate image in comparison to every sin-
gle feature line, and use a weighted average to find the final
pixel to sample.

3



Figure 7. Two simple drawings of cubes that I made.

Figure 8. A face that I drew and reflected to create a second view.

3.3. Post-warp

To bring the intermediate image back to its desired lo-
cation in world space from its parallel position, we apply a
post-warp step, which essentially applies the reverse of an
intermediate rectifying homography Hs.

Because Hs is unknown in the situation where camera
geometry is unknown, Seitz and Dyer suggest supplying
control points to give a homography, or to interpolate be-
tween H0 and H1 [7].

4. Experiment
I applied my implementation of Seitz and Dyer’s view

morphing process to two main hand-drawn image sets, and
observed the outcome to see if I could create smooth and
natural-looking animations of rotation using the view mor-
phing method.

4.1. Keyframe dataset

In order to test the view morphing procedure, we need
2D keyframes to interpolate. I created the small dataset used
here by drawing my own 2D keyframes. As someone who
dabbles in 2D animation both as a hobby and for work, I
wanted to try view morphing my own drawings. I drew a
simple cube from two different angles, shown in Figure 7,
and a simple face shown in Figure 8. Each of the cubes
was drawn individually, while only one face was drawn and
reflected for a second view.

Notably, imprecise hand-drawn images such as these
were of interest to me for investigation, as they do not nec-

essarily make sense by 3D physical rules (for example, in
Figure 7 you can see that lines that should be parallel are
not necessarily parallel, and if you were to extend the edges
as lines they would not intersect to the expected vanishing
points).

As is detailed in more depth in the Results section, I also
added a cube created in Blender for comparison of a more
realistic shape which follows 3D physical rules.

4.2. Method of evaluation

For my personal keyframes, which do not have ”ground
truth” inbetweens, I will evaluate the resulting animations
with subjective visual observations - whether or not it looks
natural, whether or not it has a lot of artifacts and noise, and
if it seems to retain the general shape of the object.

I also compare results of the view morphing process with
results of simple image morphing (which just applies the
Beier-Neely morph directly), to see if the view morphing
process works better and preserves straight lines better like
Setiz and Dyer mention.

4.3. Limitations in My Implementation

Due to limitations of timeframe, I was unable to com-
plete the third and final post-warp step in Seitz and Dyer’s
process. As a result, the images I produced are all simply
interpolated rectified images, which may appear unnaturally
warped.

The implementations of the first two steps in the pro-
cess can be found in rectify blend.py, in the GitHub
repository linked in the appendix.

4.4. Choosing Correspondences and Feature Lines

Coorespondence points were chosen by hand using the
OpenGL program I wrote. When the user clicks on a point,
its pixel coordinate will be printed. I used minimal cor-
respondence points partly because I wanted to speed up the
process, and partly because I was limited by manually click-
ing and I wanted to be precise where I could be.

For the hand-drawn cube, I used 13 correspondences and
7 feature lines.

For the blender cube, I used 15 correspondences and 15
feature lines.

For the face, I used 24 correspondences and 21 feature
lines.

The reason for choosing a subset of feature lines rather
than using all possible pairs of correspondence points is
simply for speed of the program. Because Beier-Neely
needs to compare all pixels to all lines for each interme-
diate morph, it can become very computationally slow with
too many feature lines.

4



Figure 9. Rectified hand drawn cubes with epipolar lines plotted.

Figure 10. Morphing hand drawn cubes with rectification, where
t = 0, 0.3, 0.5, 0.7, 1.0.

Figure 11. Morphing hand drawn cubes without rectification,
where t = 0, 0.3, 0.5, 0.7, 1.0.

4.5. Results

Animations of all the results described here are available
on an external slidedeck. The link can be found in the ap-
pendix.

4.5.1 Hand drawn cube

The first set I tried was the hand-drawn cubes. Again for
this set, I used 13 correspondences and 7 feature lines.

You can see the rectified images with epipolar lines
drawn in Figure 9. While corresponding points are indeed
on the same epipolar lines, the overall rectification did not
work as I expected; you can see that the baselines of the
front faces are not horizontal as one would expect from rec-
tification like this. This is most likely due to a combination
of too few and too noisy correspondences, as well as the
non-3D-rules aspect of the cube.

I compared both morphing with the premorph rectifica-
tion step as seen in Figure 10, and without (simply Beier-
Neely morphing) as seen in Figure 11. Again, note that the
morphs with rectification do not have the third post-morph
step applied.

I was surprised to find that even with the pre-morph step,
the incorrect warping of straight edges (seen on the left and
right faces of the cube) appeared in almost equal intensity

Figure 12. Large cube from Blender with 15 feature lines marked.

Figure 13. Rectified large Blender cube images with epipolar lines
marked.

between the rectified and non-rectified morphs. From Seitz
and Dyer’s remarks on image morphing vs view morphing,
I had expected the pre-morphed rectified version to better
preserve straight lines [8].

To see if the non-3D-rules aspect of the cube was the
main factor in these poor results, I tried a subdivided cube
made in Blender for a more precise and realistic comparison
model.

4.5.2 Blender cube

The hope with the Blender cube was to test my implemen-
tation on an image that followed real life 3D rules, and see
if this differed from my results for the hand drawn cube.

For this set, I first tried 15 correspondence and 15 feature
lines, which are marked in Figure 12.

The rectification gave results that were more in line with
what I expected from a rectified cube; as you can see in
Figure 13, the edges running parallel are horizontal.

However, the end result with the morphing is relatively
similar to the hand drawn cube; the sides of the cube still
seem to bulge during its transition, in both the rectified im-
ages in Figure 14 and the plain Beier-Neely morphs in Fig-
ure 15.

Since the rectification went as expected this time, this
lead me to believe that the poor results are mainly related

5



Figure 14. Morphing Blender cube with rectification, where t =
0, 0.3, 0.5, 0.7, 1.0.

Figure 15. Morphing Blender cube without rectification, where
t = 0, 0.3, 0.5, 0.7, 1.0.

Figure 16. Faces with feature lines for Beier-Neely morphing plot-
ted.

to noisy and too few correspondences, and too few feature
lines selected.

4.5.3 Face

The final image set that I tested my implementation on was
a simple hand drawn face. I used 24 correspondences and
21 feature lines, which can be seen in Figure 16.

The final results for both the rectified and simple Beier-
Neely morphs were terrible. As you can see in the plain
Beier-Neely morphing outcome in Figure 18, there are in-
tense artifacts and the features pinch in an unappealing way.
In Figure 17 the rectified version is even worse. Somehow
the rectification transformed the left-facing face to be right-
facing, which was unexpected and could be a source of the
poor quality.

While I initially thought 21 feature lines would be a mod-
erate amount of feature lines for morphing, it appears that
quite a few more would be required to get a desirable result.

Figure 17. Morphing hand drawn face with rectification, where
t = 0, 0.3, 0.5, 0.7, 1.0.

Figure 18. Morphing hand drawn face without rectification, where
t = 0, 0.3, 0.5, 0.7, 1.0.

5. Conclusion
5.1. Interpretation of results

Though the evaluation of results was based on subjec-
tive visual appearance, I believe most viewers would rate
the results negatively if they were to appear in the Sunday
morning cartoons.

It is necessary to keep in mind that I had not imple-
mented the third and final post-morph step in any of these
results. However, I don’t believe an inverse homography
could help much in terms of straightening warped lines or
erasing heavy artifacts. While it would be interesting to see
what results I have with the third step in place, I am not sure
that it would significantly enhance my results.

As I have mentioned briefly in the Results section, I be-
lieve these poor results are mainly attributable to too few
and too noisy correspondences, as well as too few feature
lines. I initially believed the non-3D-world aspect of line
drawings was the main culprit. However, after testing my
implementation on the 3D-world-abiding Blender cube, and
seeing that rectification worked as expected but we still got
poor results, I thought that most of the issues must be com-
ing from correspondences and feature lines.

When initially selecting correspondences and feature
lines, my goal was to select few enough that the process
would run quickly, but enough to give some decent results.
Evidently, I pushed too hard for speed and my results suf-
fered.

That being said, even with as few as 21 feature lines for
the face, creating 8 intermediate frames still took at least an
hour due to the slow implementation of Beier-Neely mor-
phing. Since every pixel must be compared to every feature
line, computation time easily builds up, especially for larger
images.

Selecting correspondences and feature lines manually
through OpenGL was also time intensive and bothersome. I

6



had to focus and take my time to click precisely, and could
not edit my selections afterwards. This also contributed to
the noisy and imprecise nature of my correspondences.

5.2. View morphing for animation

Let us revisit the idea of making animation easier
through this view morphing process; considering how labo-
rious manually selecting correspondences and feature lines
was, and how long Beier-Neely morphing takes to run, this
is definitely not a viable option for animators (at least not
with my implementation). Like Catmull mentioned, the ex-
tra time to provide the information (correspondences and
feature lines) required for this pipeline to run would greatly
overshadow any convenience of automatically generated in-
betweens.

In hindsight, as 2D animation doesn’t need to follow the
3D world rules that view morphing aims to preserve, other
applications such as interpolating curves could be much
more useful and expressive. Ultimately, animators want to
have the control to create expressive and aesthetically pleas-
ing animations, and perhaps the best way to do that is sim-
ply by hand.

5.3. Future ideas

Beyond improving this implementation by selecting
denser correspondences and more feature lines, I could find
ways to make the Beier-Neely morph faster, or research
newer field morphing alternatives. In a similar vein, to make
the whole process easier and smoother, it would be helpful
to find correspondences automatically, perhaps through a
CNN like Ji et al implemented [5].

In thinking of animators and how to streamline their pro-
cess, it would also be good to consider interfaces with which
to use an implementation like this one. How can we keep
making things as efficient and easy as possible for anima-
tors, so that they can keep creating wonderful animations
for the world to watch?

References
[1] Cacani features. https://cacani.sg/

cacani-features/?v=7516fd43adaa, 2020.
[2] T. Beier and S. Neely. Feature-based image metamorphosis,

1992.
[3] L. Carvalho, R. Marroquim, and E. V. Brazil. Dilight: Digital

light table - inbetweening for 2d animations using guidelines.
Computers and Graphics, 65:31–44, 2017.

[4] E. Catmull. The problems of computer-assisted animation.
SIGGRAPH Computer Graphics, 12(3):348–53, 1978.

[5] D. Ji, J. Kwon, M. McFarland, and S. Savarese. Deep view
morphing, 2017.

[6] T. Miura, J. Iwata, and J. Tsuda. An application of hybrid
curve generation - cartoon animation by electronic comput-
ers, 1967.

[7] S. M. Seitz and C. R. Dyer. Toward image-based scene rep-
resentation using view morphing, 1995.

[8] S. M. Seitz and C. R. Dyer. View morphing, 1996.
[9] N. Sun, T. Ayabe, and K. Okumura. An animation engine

with the cubic spline interpolation. 2008 International Con-
ference on Intelligent Information Hiding and Multimedia
Signal Processing, pages 109–112, 2008.

[10] J. Xing, L.-Y. Wei, T. Shiratori, and K. Yatani. Autocom-
plete hand-drawn animations. ACM Transactions on Graph-
ics, 34(6), 2015.

6. Appendix
GitHub repository:

https://github.com/CynthiaXJia/
view-morphing-2d-animation

Animations of results:
https://docs.google.com/presentation/d/
1Nu4PXLqI2rPEUc3EiESsuVsCLoDG-wVDRiFIHFumRew/
edit?usp=sharing

7

https://cacani.sg/cacani-features/?v=7516fd43adaa
https://cacani.sg/cacani-features/?v=7516fd43adaa
https://github.com/CynthiaXJia/view-morphing-2d-animation
https://github.com/CynthiaXJia/view-morphing-2d-animation
https://docs.google.com/presentation/d/1Nu4PXLqI2rPEUc3EiESsuVsCLoDG-wVDRiFIHFumRew/edit?usp=sharing
https://docs.google.com/presentation/d/1Nu4PXLqI2rPEUc3EiESsuVsCLoDG-wVDRiFIHFumRew/edit?usp=sharing
https://docs.google.com/presentation/d/1Nu4PXLqI2rPEUc3EiESsuVsCLoDG-wVDRiFIHFumRew/edit?usp=sharing

