
Deep View Morphing

Alex R. Kuefler
Department of Symbolic Systems

Stanford University
akuefler@stanford.edu

Abstract

View morphing takes two views of a 3D object and infers
the appearance of the object at intermediary views. This
problem is traditionally approached through the lens of
epipolar geometry, but such techniques require computing
pixel correspondences, and are brittle to changes in visibil-
ity. This work introduces a neural network based approach
for learning to generate morphs of 3D objects. Three ex-
periments are performed to assess the model’s ability to
reconstruct images and generalize to unseen objects.

Keywords
Deep learning, view morphing, deconvolutional neural
networks, image reconstruction.

1. Introduction
A remarkable property of the visual system is its ability

to infer 3D structure from a limited number of 2D projec-
tions. This process, called “stereopsis”, has been the focus
of intensive study in computer vision [1] as well as cogni-
tive science [2, 3]. Due to the inherent ambiguity of map-
ping from lower to higher-dimensional spaces, depth per-
ception is not merely a sensory experience, but it is also an
act of perception that engages cognitive faculties such as
world-knowledge and memory [4].

This work presents a convolutional neural network
(CNN) for learning properties of objects’ 3D geometry
from 2D images. In particular, the Deep View Morphing
Network (DVMN) receives two images of an object, each
taken from a different camera angle, and generates an im-
age of how the object would appear if viewed from an in-
termediary angle. This work extends previous, theory-based
View Morphing paradigm using deep machine learning.

2. Background
Image Morphing has been well studied over the past

decades and has traditionally relied on various interpolation
procedures for smoothly transforming one image to another
by generating intermediary frames. For example, [5] intro-
duces two-pass mesh warping algorithms, which given im-
ages 𝐼! and 𝐼! computes mesh-grids 𝑀! and 𝑀! whose ver-
tices lie on image landmarks and are constrained to be
equivalent topologically. The warping problem then reduc-
es to linear interpolation between 𝑀! and 𝑀!. What Image
Morphing techniques such as this share in common is that
they consist of feature specification, warp generation, and
transition control stages [6]. For example, in mesh warping,

feature specification occurs with the initialization of 𝑀!
and 𝑀! whose graphical organization can essentially be
thought of as whole-image descriptors.

In contrast, the View Morphing paradigm leverages an
understanding of projective geometry in order to produce
more convincing warps. [7] originally describes a proce-
dure where images 𝐼! and 𝐼! undergo pre-warping, such
that 𝐼! = 𝐻!!!𝐼! and 𝐼! = 𝐻!!!𝐼! where 𝐻!!! and 𝐻!!! are
projective transformations. Interpolating between the pro-
jected images 𝐼! and 𝐼! then produces a combined represen-
tation 𝐼! that is then re-projected back into the reference
frame to form an image. By performing linear interpolation
in the projected space rather than the input-space, View
Morphing accurately models changes in viewpoint and pro-
jective shape, where Image Morphing only preserves shape
under parallel image translations and zooms.

Later work has improved the fidelity of Image Morph-
ing [8] or attempted to generalize View Morphing to more
than two cameras [9], but the 1996 algorithm introduced by
[7] appears to be the state of the art for warps that preserve
intermediate 3D geometry. Nevertheless, there are three
notable shortcomings of this approach. First, view morph-
ing relies on principles of epipolar geometry, requiring that
the camera matrices be known and that pixel correspond-
ences are found. Any misalignments in correspondences
can potentially produce artifacts in the morph. Second,
view morphing assumes that objects to be morphed have
near-constant visibility, and is brittle when the difference
between two views is characterized by an extreme angle.
And finally, evaluating the performance of the morphing
algorithm is largely subjective, and is not easily measured
quantitatively. This point remains true for many image
generation techniques, particularly those in the unsuper-
vised learning literature [10].

2.1. Contribution to Past Work
The View Morphing method proposed in this project

potentially overcomes these three shortcomings identified
for past approaches. Because the DVMN performs all
transformations using learnable weight-matrices, there is no
need to estimate camera parameters or identify correspond-
ing points. Similarly, the DVMN compresses image inputs
into a low-dimensional feature vector, rather than mapping
them onto projection planes. As such, there is no reason in
principle to believe this “pre-warped” representation is sub-
ject to the constraints of projective transformations. Thus
morphs may still be robust between extremely different

views, assuming the network is trained on sufficient data.
Furthermore, because the model is trained with stochastic
gradient descent (SGD) to minimize an objective, the quali-
ty of its morphs can be assessed quantitatively by measur-
ing the reconstruction loss on a validation or testing set.

More generally, this approach is consistent with a larger
trend in Artificial Intelligence wherein data-driven tech-
niques replace traditional, theory-based approaches.
Whereas pattern recognition tasks such as image classifica-
tion have a much longer history of relying on machine
learning, reconstruction and 3D-inferrence are strongly
supported by a theory of projective geometry. Approaches
like the DVMN present model-free alternatives to previous
algorithms.

3. Approach
The DVMN is trained to minimize image reconstruction

error using supervised backpropagation, similarly to the
approach taken by [11]. Formally, let 𝑋 be a set of training
examples where 𝑋 = { 𝑥!!, 𝑥!! ,… , 𝑥!!, 𝑥!! } and let
𝑌 = {𝑦!,!! ,… , 𝑦!,!! } be a set of target values, such that 𝑥!! is
the image of the 𝑖!! 3D object viewed at angle 𝑗 and 𝑦!,!!! is

the image of the 𝑖!! object viewed at angle
!!!!!!

!
. Then

the network ℎ! is trained to minimize the Euclidean error,

 𝐽 𝜃 = ℎ! 𝑥!! , 𝑥!!
! − 𝑦!,!!

!
!!!!!

!
!!!

with respect to the network parameters 𝜃. In practice, the
𝑖!! object contributes numerous views to the training set,
and the viewing angles 𝑗 and 𝑗′ are chosen such that
𝑗 − 𝑗! 𝑚𝑜𝑑 360 > 10, ensuring the two constituent imag-

es of a training example are sufficiently different to have a
meaningful intermediate angle.

3.1. Dataset
All examples were drawn from the Caltech “3D Objects

on Turntable” database [18]. This dataset consists of imag-
es of approximately 95 3D objects placed on a rotating
turntable and photographed every 5 degrees with a high-
resolution camera. For the purposes of this project, a subset
of 7 objects were chosen to form the training and testing
sets, which consisted of anywhere between 20-4,000 exam-
ples, depending on the experiment (where an “example” is
a tuple consisting of multiple images of the same object

from various viewing angles).

3.2. Preprocessing
Given that the network’s major task was to learn to rep-

resent the rotation between two objects, and only second-
arily concerned with generating high-quality images, fore-
ground segmentation was used to preprocess the data. All
images were clustered using 𝑘-means (where 𝑘 is 7-18 cen-
troids depending on the contrast of the 3D object against
the background). Pixels whose nearest centroid consisted of
RGB values whose channels all exceed 100 were masked
black, as they predominantly belong to the background of
this particular dataset. This segmentation procedure pro-
duced some imperfections, but largely succeeded in fore-
grounding the turntable and 3D object against a purely
black background (See Fig. 1). Images were also
downsampled to 2!×2! RGB pixels where the scale 𝑠 was
typically set to be 6. The resulting 64x64 color images con-
tain a considerable amount of detail, while greatly reducing
the computational expense of training and prediction.

3.2. Architectural Details
The DVMN consists of two major “sub-networks”

trained end-to-end. An extractor sub-network 𝐸 takes a
𝑥!! , 𝑥!!

! tuple as input and calculates a merged feature vec-
tor 𝜙 𝑥! for the entire example. A generator network 𝐺
takes 𝜙 𝑥! as input, performs a number 𝑢 of upsampling
operations, and outputs an estimated image 𝑦!,!!

! ∈
ℝ!!×!!×!.

The specific architecture of 𝐸 differs little from most
CNN formulations. It consists of two convolutional layers
with stride 1 and padding 1, ensuring the input image rep-
resentations retain their dimensionality. These layers are
followed by a third convolution and 4x4 max pooling, ag-

Figure 2. DVMN Architecture with skip connections. Convolutional layers (blue), Max pooling (yellow), FC layers
(red), and upsampling (green).

Figure 1. K-means segmentation.

gressively downsampling the feature maps. The downsam-
pled feature maps are then processed with two fully-
connected (FC) layers to produce a flattened 𝜙 𝑥! ∈
ℝ!!×!!×!, where 𝑑 = 𝑠 − 𝑢.

The architecture of 𝐺 was designed to perform one of a
few possible upsampling methods on its input:

Upconvolution (variously known as “convolution trans-
pose”, “deconvolution”, or “fractionally strided convolu-
tion”) is a deep learning operation that has seen use in im-
age generating networks [12, 13]. By associating single
units in an input layer to a volume of outputs through a
weight matrix, they can learn to undo 2D-convolutions,
producing output volumes from lower-dimensional repre-
sentations.

Up-Down Convolution follows an upconvolution with a
classic convolutional layer in which zero-padding and
stride have been chosen in such a way to preserve the di-
mensions. [11] suggest that this works better in image re-
construction tasks empirically. Intuitively, the upconvolu-
tion can be thought of as being responsible for upsampling,
where the proceeding convolution is responsible for fine-
tuning and smoothing the blown-up image.

Simple Up-Down observes that image resizing through
bilinear interpolation [14] is a differentiable operation that
can be built into a neural network without adding more
parameters. Some instantiations of DVMN essentially per-
form Up-Down Convolution where the “Up” stage is re-
placed with parameter-free image resizing.

The chosen upsampler is repeated 𝑢 times and followed
by a convolutional layer with 3 kernels, producing a
2!×2!×3 output volume readily interpretable as an RGB
image. Rectified linear (ReLU) or simply linear units are
used in the output layer. Exponential linear units (ELU) are
used everywhere else throughout the network [15].

A final detail of the structure of 𝐺 is the use of skip-

connections. [16] observes that it may be easier to learn a
“residual” mapping than a function based on stacked layers.
If ℋ(𝑥) is an underlying function to be approximated by a
CNN whose predictions are defined as ℱ 𝑥 ∶= ℋ 𝑥 − 𝑥,
then the optimization problem reduces to learning
ℱ 𝑥 + 𝑥. Intuitively, a network that allows its input 𝑥 to
“skip” ahead into a hidden representation ℱ 𝑥 facilitates
backward flow of gradients, bypassing intermediate trans-
formations by the network’s weight matrices.

Because the output images of the DVMN are so similar
to the inputs (generally retaining the same colors and many
spatial properties), it is reasonable to suspect that skip con-
nections will improve image generation. In other words, if
the input images 𝑥!! and 𝑥!!

! are immediately present in 𝐺,
then the DVMN may be able to focus more of its optimiza-
tion on capturing the delta between the two images in
𝜙 𝑥! , rather than capturing properties stable between the
two images (e.g., color). A gating mechanism was also im-

Figure 3. Gated Skip-Connection.

Figure 4. Reconstructions from 18 conditions for experiment 1.

plemented, allowing the DVMN to learn elementwise, sig-
moid weights controlling the extent to which 𝑥!! and 𝑥!!

! are
added into the a hidden representation.

4. Results
Three experiments were carried out in order to evaluate

the DVMN’s ability to generate convincing images, its per-
formance on a larger sample of data, and its generalization
to unseen objects.

4.1. Experiment 1
The first experiment was designed to assess which ar-

chitectural settings were the most conducive for image gen-
eration. Between the filter sizes, the number of layers, the
type and number of upsamplers, the use of (gated) skip
connections and more, there were many choices for net-
work structures.

Table 1. 18 conditions of experiment 1.
Upsampler Skip Connect. Output

Upconv. False Linear

Upconv. False ReLU

Upconv. Gated Linear

Upconv. Gated ReLU

Upconv. True Linear

Upconv. True ReLU

Up-Down False Linear

Up-Down False ReLU

Up-Down Gated Linear

Up-Down Gated ReLU

Up-Down True Linear

Up-Down True ReLU

Simple-Up False Linear

Simple-Up False ReLU

Simple-Up Gated Linear

Simple-Up Gated ReLU

Simple-Up True Linear

Simple-Up True ReLU

A single turntable object 𝑏 (i.e., a bunch of bananas)
was chosen to generate training examples by computing
every combination of viewing angle (subject to the con-
straint that the two viewing angles forming an input tuple
were at least 10 degrees apart). For concreteness, the sam-
ple then consisted of tuples of the form
𝑆 = { 𝑥!! , 𝑥!"! , 𝑦!! , 𝑥!! , 𝑥!"! , 𝑦!"! ,… 𝑥!"#! , 𝑥!""! , 𝑦!"#! }. 20

training and 20 testing samples were chosen from 𝑆 to form
the datasets for experiment 1.

Eighteen experimental conditions were created by se-
lectively changing the upsampling method, the presence of
skip connections (and the presence of gates when skip con-
nections were used), and the activation function of the out-
put layer.

Figure 5. Training and testing loss in Exp. 1. Color
indicates upsampling: simple (red), up-down

(green), upconv (blue). Solid lines have no skip con-
nections. Dashed lines are gated, dotted are not.

The network was trained for 400 epochs in each condi-
tion, using SGD with Adam updates and the hyperparame-
ter settings recommended in [17]. Fig. 5 displays the train-
ing and testing loss every 5 iterations. Two notable features
emerge from the loss plots. First, a significant gap appears
between those conditions in which skip-connections were
used and those in which they were not, indicating that skip-
connections actually impeded image reconstruction. Se-
cond, mere upconvolution based methods underperformed
the other two upsamplers, achieving its lowest testing loss
at 188.0 as opposed to 61.2 (Up-Down Convolution) and
115.5 (Simple Up-Down). From these results, it seems fair
to conclude that skip-connections (as they have been de-
scribed here) should be avoided for image generation, and

that post-convolutions after upconvolution layers do appear
to make a significant difference, as predicted by [11].

These findings are borne out by the reconstructed imag-
es shown in Fig. 4. The visualizations indicate that the use
of linear activation functions cause shimmers to appear
around the reconstruction. This effect is caused by pixels
becoming “dead” as they fall out of the 0-255 range, and
can be corrected by changing display settings (e.g., thresh-
olding pixels before plotting). More seriously, the high loss
caused by the upconvolutions and skip-connections is made
visible in the blurriness of their respective reconstructions.
The skip-connections in particular cause the blurred image
to smear over a greater horizontal area. This effect is likely
caused by a large amount of the input views remaining re-
sidually in the reconstruction: 𝑏, viewed in profile, is wider
than it is tall and the additive effect of the skip-connections
remembers this.

Interestingly, the parameter-free upsizing operation per-
formed during Simple Up-Down appeared to perform on
par with the significantly more complicated Up-Down
Convolution.

4.2. Experiment 2
The setup of the second experiment is largely identical

to that of Experiment 1, however, the size of the dataset
under consideration was increased and a second 3D object,
𝑡, (a table) was added. Again, a sample of data was created
by constructing combinations of the viewing angles, such
that 𝑆 = { 𝑥!! , 𝑥!"! , 𝑦!! , 𝑥!! , 𝑥!"! , 𝑦!! ,… }. 4,960 examples
were then chosen from 𝑆 and split evenly into training and
testing sets.

Table 2. 4 conditions of experiment 2.
Upsampler 𝒖

Up-Down 4

Up-Down 5

Simple-Up 4

Simple-Up 5

Considering the findings of Experiment 1, Experiment 2
consists of fewer conditions. Output nonlinearities were
fixed as ReLUs and skip connections were excluded from
all conditions. Instead, the upsampling method and the
number 𝑢 of upsampling operations (which also controls
the dimensionality of 𝜙 𝑥!) were manipulated. Consider-
ing the increased amount of data, training also occurred
over only 50 epochs.

Figure 6. Training and testing loss in Exp. 2. Color

indicates upsampling: simple (red), up-down
(green). Dashed lines have 5 upsamples, solid 4.

As show in Fig. 6, the Up-Down Convolution networks
achieved lower loss both during training and testing, but
showed a tendency to diverge. The loss of the 𝑢 = 5 condi-
tion spiked particularly early on. This instability may be
related to the power of the model combined with the low
dimensionality of 𝜙 𝑥! , which must compress information
from a 12,288-valued matrix (i.e., the 64x64x3 image) into
only 12 values. Training of the Simple Up-Down networks
was more stable.

Figure 7. Exp. 2 Reconstructions. Top row is ground

truth. Bottom is predicted.

The images reconstructed after 50 epochs again ap-
peared fairly crisp. Even images generated by the Up-Down
Convolution networks before their training diverged look
mostly correct, if a little fuzzy.

4.3. Experiment 3
So far the reconstructions have looked promising, and

the training and testing plots reveal little overfitting. How-
ever, the argument can be made that the networks’ good
performance may be caused by high correlation between
the training and testing sets. Because the networks train on
every single image appearing in the testing set (the differ-
ence between training and testing is not the images used,
but the combinations of viewing angles), its task may be
described as:

• Learn how to copy every image viewed during train-
ing.

• During inference, select the correct viewing angle from
the set of memorized images.

As such, the networks may be behaving more like nearest
neighbor classifiers, rather than truly generative models.

 The third experiment re-designs the learning task to
something more generalizable. Instead, we want the net-
work to:

• Learn a low-dimensional representation capturing per-
spective information from both viewing angles.

• During inference, expand this representation into an
appropriate, but perhaps completely novel image.

These goals are accomplished by changing the manner
in which the training and testing sets are formed. A subset
of 7 turn-table objects were chosen and each appeared only
during training, or during testing. Training examples were
created combinatorially as before, but drawn from the set of
views of the bananas, table, clock, and flower objects. The
testing set included views of the motorcycle, teddy bear,
and car objects. In total, a random sample of 4000 training
and 2500 testing examples were chosen.

Table 3. 4 conditions of experiment 3.
Upsampler Weight-Sharing

Up-Down True

Up-Down False

Simple-Up True

Simple-Up False

Due to the goal of generalizing information about 3D
structure to novel objects, greater care was taken to regular-
ize the model and reduce overfitting. L2 regularization was
introduced to the loss function and a 25% chance of drop-
out occurred in all trainable layers. Observe also that apply-
ing two different 𝐸 networks to the two different input im-

ages may be redundant, as feature extraction should act
symmetrically (i.e., the network should give the same out-
put to the same two object views, irrespective of their order
in the input tuple). As such, weight-sharing in 𝐸 is applied
for some experimental conditions, leveraging domain
knowledge to reduce the number of parameters.

In order to combat divergence during training, the
learning rate was decreased by an order of magnitude and 𝑢
was held at 3 (ensuring 𝜙 𝑥! ∈ ℝ!"#). Otherwise, the hy-
perparameters (exponential decay rate, filter numbers, siz-
es, etc.) remained the same. Networks were set to train for
50 epochs.

Despite these adjustments, two of the models diverged
while training. Interestingly, it was the Simple Up-Down,
rather than the Up-Down Convolutional networks that di-
verged. An explosion in the L2 regularization term, whose
value approached infinity, appears to be the cause of diver-
gence. Later work should compute this in a more numeri-
cally stable way.

Figure 7. Training and testing loss in Exp. 3. Color

indicates upsampling: simple (red), up-down
(green). Dashed lines indicate weight-sharing.

As evidenced by the loss plot, efforts to regularize the
network were unsuccessful. Those models that succeeded
in training the entire 50 epochs showed almost no ability to
generalize in the allotted time, as the testing curve re-
mained nearly flat.

Figure 8. Exp. 3 Training Reconstructions. Top row

is ground truth. Bottom is predicted.
Based on the reconstructions in Fig. 9, it appears that

the network, when confronted with novel objects, attempts
to reconstruct an amalgam of training set objects. For ex-
ample, the Simple Up-Down network (third image) pro-
duced a reconstruction whose green base strongly resem-
bles that of the flower, but is elongated like a view of the
clock. The orange-yellow coloration of the testing recon-
structions is likely caused by the presence of the bananas
and table in the testing set. The training reconstructions
(Fig. 8) appear to demonstrate that weight-sharing seems
like a viable option for the DVMN, but the networks may
not have trained for long enough to make a definitive
judgment.

Figure 9. Exp. 3 Training Reconstructions. Top row

is ground truth. Bottom is predicted.

5. Conclusions
 This work attempts to address the problem of View
Morphing from a deep learning perspective. A CNN based

model is presented and a number of architectural details are
explored. Arguments have been made for (and against) the
use of skip-connections in image reconstruction. The use-
fulness of different approaches to learnable upsampling
was also examined.

 The results of Experiments 1 and 2 demonstrate that the
DVMN is capable of generating faithful reconstructions
and producing the appropriate image in response to differ-
ent viewpoint combinations. However, experiment 3
showed that this approach generalizes poorly to novel ob-
jects. A major limiting factor is the amount of data used. It
may be unreasonable to expect a model of this complexity
to learn how to infer 3D structure from viewing only 4 ob-
jects, even if the number of views from which to learn is
approximately 4000. Fortunately, this problem can likely
be addressed with more training time and more computing
power. The use of computer-generated images may also be
useful for creating 3D examples viewable from many an-
gles.

 It is also worth noting that whereas the DVMN has
clearly defined feature specification (extraction with 𝐸) and
warp generation (inference with 𝐺), unlike other Image
Morphing methods, there is no notion of transition control.
The DVMN is constrained to producing views at the mid-
point angle. Follow-up work may experiment with allowing
the DVMN to produce smooth warps, perhaps by allowing
it to accept a rotation value as input, in addition to the two
viewing images.

Although skip-connections as described here were un-
beneficial during reconstruction, there may be other formu-
lations that improve generalization. Supplying the skips
with their own transformation matrices (perhaps approxi-
mating the projective transforms performed in traditional
View Morphing) may allow more information from the
input to sneak past the dimensional bottleneck at 𝜙 𝑥! .
Such an approach would ensure color and shape infor-
mation remains present during image generation, and
would interpolate nicely between the deep learning and
epipolar paradigms.

References
[1] Zhang, Z. (1998). Determining the epipolar geometry

and its uncertainty: A review. International journal of
computer vision, 27(2), 161-195.

[2] Marr, D., Poggio, T., Hildreth, E. C., & Grimson, W.
E. L. (1991). A computational theory of human stereo
vision (pp. 263-295). Birkhäuser Boston.

[3] Mayhew, J. E., & Frisby, J. P. (1981). Psychophysical
and computational studies towards a theory of human
stereopsis. Artificial Intelligence, 17(1), 349-385.

[4] Churchland, P. M. (1996). The engine of reason, the
seat of the soul: A philosophical journey into the brain.
MIT Press.

[5] Smythe, D. B. (1990). A two-pass mesh warping algo-
rithm for object transformation and image interpola-
tion. Rapport technique, 1030, 31.

[6] Wolberg, G. (1998). Image morphing: a survey. The
visual computer, 14(8), 360-372.

[7] Seitz, S. M., & Dyer, C. R. (1996, August). Toward
image-based scene representation using view morph-
ing. In Pattern Recognition, 1996., Proceedings of the
13th International Conference on (Vol. 1, pp. 84-89).
IEEE.

[8] Shechtman, E., Rav-Acha, A., Irani, M., & Seitz, S.
(2010, June). Regenerative morphing. In Computer Vi-
sion and Pattern Recognition (CVPR), 2010 IEEE
Conference on (pp. 615-622). IEEE.

[9] Georgiev, T., & Wainer, M. (1997). Morphing between
multiple images. S. Illinois Univ. at Cardbondale dept.
of Comp. Science, Technical Report, 17.

[10] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., & Bengio,
Y. (2014). Generative adversarial nets. In Advances in
Neural Information Processing Systems (pp. 2672-
2680).

[11] Dosovitskiy, A., Tobias Springenberg, J., & Brox, T.
(2015). Learning to generate chairs with convolutional
neural networks. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (pp.
1538-1546).

[12] Zeiler, M. D., Krishnan, D., Taylor, G. W., & Fergus,
R. (2010, June). Deconvolutional networks.
In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on (pp. 2528-2535). IEEE.

[13] Radford, A., Metz, L., & Chintala, S. (2015). Unsuper-
vised Representation Learning with Deep Convolu-
tional Generative Adversarial Networks. arXiv preprint
arXiv:1511.06434.

[14] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,
Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., Ghemaway, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
L., Kudlur, M., Levenberg, J., Mane, D., Monga, R.,
Moore, S., Murray, M., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viegas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., & Zheng, Z.
(2016). TensorFlow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems. arXiv preprint
arXiv:1603.04467.

[15] Clevert, D. A., Unterthiner, T., & Hochreiter, S.
(2015). Fast and Accurate Deep Network Learning by
Exponential Linear Units (ELUs). arXiv preprint
arXiv:1511.07289.

[16] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep
Residual Learning for Image Recognition. arXiv pre-
print arXiv:1512.03385.

[17] Kingma, D., & Ba, J. (2014). Adam: A method for
stochastic optimization.arXiv preprint
arXiv:1412.6980.

[18] Moreels, P., & Perona, P. (2005, October). Evaluation
of features detectors and descriptors based on 3D ob-
jects. In Computer Vision, 2005. ICCV 2005. Tenth
IEEE International Conference on (Vol. 1, pp. 800-
807). IEEE.

