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Abstract 

View morphing takes two views of a 3D object and infers 
the appearance of the object at intermediary views. This 
problem is traditionally approached through the lens of 
epipolar geometry, but such techniques require computing 
pixel correspondences, and are brittle to changes in visibil-
ity. This work introduces a neural network based approach 
for learning to generate morphs of 3D objects. Three ex-
periments are performed to assess the model’s ability to 
reconstruct images and generalize to unseen objects. 
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1. Introduction 
A remarkable property of the visual system is its ability 

to infer 3D structure from a limited number of 2D projec-
tions. This process, called “stereopsis”, has been the focus 
of intensive study in computer vision [1] as well as cogni-
tive science [2, 3]. Due to the inherent ambiguity of map-
ping from lower to higher-dimensional spaces, depth per-
ception is not merely a sensory experience, but it is also an 
act of perception that engages cognitive faculties such as 
world-knowledge and memory [4]. 

This work presents a convolutional neural network 
(CNN) for learning properties of objects’ 3D geometry 
from 2D images. In particular, the Deep View Morphing 
Network (DVMN) receives two images of an object, each 
taken from a different camera angle, and generates an im-
age of how the object would appear if viewed from an in-
termediary angle. This work extends previous, theory-based 
View Morphing paradigm using deep machine learning. 

2. Background 
Image Morphing has been well studied over the past 

decades and has traditionally relied on various interpolation 
procedures for smoothly transforming one image to another 
by generating intermediary frames. For example, [5] intro-
duces two-pass mesh warping algorithms, which given im-
ages 𝐼! and 𝐼! computes mesh-grids 𝑀! and 𝑀! whose ver-
tices lie on image landmarks and are constrained to be 
equivalent topologically. The warping problem then reduc-
es to linear interpolation between 𝑀! and 𝑀!. What Image 
Morphing techniques such as this share in common is that 
they consist of feature specification, warp generation, and 
transition control stages [6]. For example, in mesh warping, 

feature specification occurs with the initialization of 𝑀! 
and 𝑀! whose graphical organization can essentially be 
thought of as whole-image descriptors. 

In contrast, the View Morphing paradigm leverages an 
understanding of projective geometry in order to produce 
more convincing warps. [7] originally describes a proce-
dure where images 𝐼! and 𝐼! undergo pre-warping, such 
that 𝐼! = 𝐻!!!𝐼! and 𝐼! = 𝐻!!!𝐼! where 𝐻!!! and 𝐻!!! are 
projective transformations. Interpolating between the pro-
jected images 𝐼! and 𝐼! then produces a combined represen-
tation 𝐼! that is then re-projected back into the reference 
frame to form an image. By performing linear interpolation 
in the projected space rather than the input-space, View 
Morphing accurately models changes in viewpoint and pro-
jective shape, where Image Morphing only preserves shape 
under parallel image translations and zooms. 

Later work has improved the fidelity of Image Morph-
ing [8] or attempted to generalize View Morphing to more 
than two cameras [9], but the 1996 algorithm introduced by 
[7] appears to be the state of the art for warps that preserve 
intermediate 3D geometry. Nevertheless, there are three 
notable shortcomings of this approach. First, view morph-
ing relies on principles of epipolar geometry, requiring that 
the camera matrices be known and that pixel correspond-
ences are found. Any misalignments in correspondences 
can potentially produce artifacts in the morph. Second, 
view morphing assumes that objects to be morphed have 
near-constant visibility, and is brittle when the difference 
between two views is characterized by an extreme angle. 
And finally, evaluating the performance of the morphing 
algorithm is largely subjective, and is not easily measured 
quantitatively. This point remains true for many image 
generation techniques, particularly those in the unsuper-
vised learning literature [10]. 

2.1. Contribution to Past Work 
The View Morphing method proposed in this project 

potentially overcomes these three shortcomings identified 
for past approaches. Because the DVMN performs all 
transformations using learnable weight-matrices, there is no 
need to estimate camera parameters or identify correspond-
ing points. Similarly, the DVMN compresses image inputs 
into a low-dimensional feature vector, rather than mapping 
them onto projection planes. As such, there is no reason in 
principle to believe this “pre-warped” representation is sub-
ject to the constraints of projective transformations. Thus 
morphs may still be robust between extremely different 



views, assuming the network is trained on sufficient data. 
Furthermore, because the model is trained with stochastic 
gradient descent (SGD) to minimize an objective, the quali-
ty of its morphs can be assessed quantitatively by measur-
ing the reconstruction loss on a validation or testing set. 

More generally, this approach is consistent with a larger 
trend in Artificial Intelligence wherein data-driven tech-
niques replace traditional, theory-based approaches. 
Whereas pattern recognition tasks such as image classifica-
tion have a much longer history of relying on machine 
learning, reconstruction and 3D-inferrence are strongly 
supported by a theory of projective geometry. Approaches 
like the DVMN present model-free alternatives to previous 
algorithms. 

3. Approach 
The DVMN is trained to minimize image reconstruction 

error using supervised backpropagation, similarly to the 
approach taken by [11]. Formally, let 𝑋 be a set of training 
examples where 𝑋 =    { 𝑥!!, 𝑥!! ,… , 𝑥!!, 𝑥!! } and let 
𝑌 =    {𝑦!,!! ,… , 𝑦!,!! } be a set of target values, such that 𝑥!! is 
the image of the 𝑖!!  3D object viewed at angle 𝑗 and 𝑦!,!!!  is 

the image of the 𝑖!! object viewed at angle 
!!!!!!

!
. Then 

the network ℎ! is trained to minimize the Euclidean error, 

 𝐽 𝜃 =    ℎ! 𝑥!! , 𝑥!!
! − 𝑦!,!!

!
!!!!!

!
!!!    

with respect to the network parameters 𝜃. In practice, the 
𝑖!! object contributes numerous views to the training set, 
and the viewing angles 𝑗 and 𝑗′ are chosen such that 
𝑗 − 𝑗!   𝑚𝑜𝑑  360 > 10, ensuring the two constituent imag-

es of a training example are sufficiently different to have a 
meaningful intermediate angle. 

3.1. Dataset 
All examples were drawn from the Caltech “3D Objects 

on Turntable” database [18]. This dataset consists of imag-
es of approximately 95 3D objects placed on a rotating 
turntable and photographed every 5 degrees with a high-
resolution camera. For the purposes of this project, a subset 
of 7 objects were chosen to form the training and testing 
sets, which consisted of anywhere between 20-4,000 exam-
ples, depending on the experiment (where an “example” is 
a tuple consisting of multiple images of the same object 

from various viewing angles).  

3.2. Preprocessing 
Given that the network’s major task was to learn to rep-

resent the rotation between two objects, and only second-
arily concerned with generating high-quality images, fore-
ground segmentation was used to preprocess the data. All 
images were clustered using 𝑘-means (where 𝑘 is 7-18 cen-
troids depending on the contrast of the 3D object against 
the background). Pixels whose nearest centroid consisted of 
RGB values whose channels all exceed 100 were masked 
black, as they predominantly belong to the background of 
this particular dataset. This segmentation procedure pro-
duced some imperfections, but largely succeeded in fore-
grounding the turntable and 3D object against a purely 
black background (See Fig. 1). Images were also 
downsampled to 2!×2! RGB pixels where the scale 𝑠 was 
typically set to be 6. The resulting 64x64 color images con-
tain a considerable amount of detail, while greatly reducing 
the computational expense of training and prediction. 

3.2. Architectural Details 
The DVMN consists of two major “sub-networks” 

trained end-to-end. An extractor sub-network 𝐸 takes a 
𝑥!! , 𝑥!!

!  tuple as input and calculates a merged feature vec-
tor 𝜙 𝑥!  for the entire example. A generator network 𝐺 
takes 𝜙 𝑥!  as input, performs a number 𝑢 of upsampling 
operations, and outputs an estimated image 𝑦!,!!

! ∈
ℝ!!×!!×!. 

The specific architecture of 𝐸 differs little from most 
CNN formulations. It consists of two convolutional layers 
with stride 1 and padding 1, ensuring the input image rep-
resentations retain their dimensionality. These layers are 
followed by a third convolution and 4x4 max pooling, ag-

Figure 2. DVMN Architecture with skip connections. Convolutional layers (blue), Max pooling (yellow), FC layers 
(red), and upsampling (green). 

 

Figure 1. K-means segmentation.   
 



gressively downsampling the feature maps. The downsam-
pled feature maps are then processed with two fully-
connected (FC) layers to produce a flattened 𝜙 𝑥! ∈
ℝ!!×!!×!, where 𝑑 = 𝑠 − 𝑢. 

The architecture of 𝐺 was designed to perform one of a 
few possible upsampling methods on its input: 

Upconvolution (variously known as “convolution trans-
pose”, “deconvolution”, or “fractionally strided convolu-
tion”) is a deep learning operation that has seen use in im-
age generating networks [12, 13]. By associating single 
units in an input layer to a volume of outputs through a 
weight matrix, they can learn to undo 2D-convolutions, 
producing output volumes from lower-dimensional repre-
sentations. 

Up-Down Convolution follows an upconvolution with a 
classic convolutional layer in which zero-padding and 
stride have been chosen in such a way to preserve the di-
mensions. [11] suggest that this works better in image re-
construction tasks empirically. Intuitively, the upconvolu-
tion can be thought of as being responsible for upsampling, 
where the proceeding convolution is responsible for fine-
tuning and smoothing the blown-up image. 

Simple Up-Down observes that image resizing through 
bilinear interpolation [14] is a differentiable operation that 
can be built into a neural network without adding more 
parameters. Some instantiations of DVMN essentially per-
form Up-Down Convolution where the “Up” stage is re-
placed with parameter-free image resizing. 

The chosen upsampler is repeated 𝑢 times and followed 
by a convolutional layer with 3 kernels, producing a 
2!×2!×3 output volume readily interpretable as an RGB 
image. Rectified linear (ReLU) or simply linear units are 
used in the output layer. Exponential linear units (ELU) are 
used everywhere else throughout the network [15]. 

A final detail of the structure of 𝐺 is the use of skip-

connections. [16] observes that it may be easier to learn a 
“residual” mapping than a function based on stacked layers. 
If ℋ(𝑥) is an underlying function to be approximated by a 
CNN whose predictions are defined as ℱ 𝑥 ∶=   ℋ 𝑥 − 𝑥, 
then the optimization problem reduces to learning 
ℱ 𝑥 + 𝑥. Intuitively, a network that allows its input 𝑥 to 
“skip” ahead into a hidden representation ℱ 𝑥  facilitates 
backward flow of gradients, bypassing intermediate trans-
formations by the network’s weight matrices. 

 

 

Because the output images of the DVMN are so similar 
to the inputs (generally retaining the same colors and many 
spatial properties), it is reasonable to suspect that skip con-
nections will improve image generation. In other words, if 
the input images 𝑥!! and 𝑥!!

!  are immediately present in 𝐺, 
then the DVMN may be able to focus more of its optimiza-
tion on capturing the delta between the two images in 
𝜙 𝑥! , rather than capturing properties stable between the 
two images (e.g., color). A gating mechanism was also im-

Figure 3. Gated Skip-Connection. 
 

Figure 4. Reconstructions from 18 conditions for experiment 1. 
 



plemented, allowing the DVMN to learn elementwise, sig-
moid weights controlling the extent to which 𝑥!! and 𝑥!!

!  are 
added into the a hidden representation. 

4. Results 
Three experiments were carried out in order to evaluate 

the DVMN’s ability to generate convincing images, its per-
formance on a larger sample of data, and its generalization 
to unseen objects. 

4.1. Experiment 1 
The first experiment was designed to assess which ar-

chitectural settings were the most conducive for image gen-
eration. Between the filter sizes, the number of layers, the 
type and number of upsamplers, the use of (gated) skip 
connections and more, there were many choices for net-
work structures. 

Table 1. 18 conditions of experiment 1. 
Upsampler Skip Connect. Output 

Upconv. False Linear 

Upconv. False ReLU 

Upconv. Gated Linear 

Upconv. Gated ReLU 

Upconv. True Linear 

Upconv. True ReLU 

Up-Down False Linear 

Up-Down False ReLU 

Up-Down Gated Linear 

Up-Down Gated ReLU 

Up-Down True Linear 

Up-Down True ReLU 

Simple-Up False Linear 

Simple-Up False ReLU 

Simple-Up Gated Linear 

Simple-Up Gated ReLU 

Simple-Up True Linear 

Simple-Up True ReLU 

 

A single turntable object 𝑏 (i.e., a bunch of bananas) 
was chosen to generate training examples by computing 
every combination of viewing angle (subject to the con-
straint that the two viewing angles forming an input tuple 
were at least 10 degrees apart). For concreteness, the sam-
ple then consisted of tuples of the form 
𝑆 = { 𝑥!! , 𝑥!"! , 𝑦!! , 𝑥!! , 𝑥!"! , 𝑦!"! ,… 𝑥!"#! , 𝑥!""! , 𝑦!"#! }. 20 

training and 20 testing samples were chosen from 𝑆 to form 
the datasets for experiment 1. 

Eighteen experimental conditions were created by se-
lectively changing the upsampling method, the presence of 
skip connections (and the presence of gates when skip con-
nections were used), and the activation function of the out-
put layer. 

  

Figure 5. Training and testing loss in Exp. 1. Color 
indicates upsampling: simple (red), up-down 

(green), upconv (blue). Solid lines have no skip con-
nections. Dashed lines are gated, dotted are not. 

 

The network was trained for 400 epochs in each condi-
tion, using SGD with Adam updates and the hyperparame-
ter settings recommended in [17]. Fig. 5 displays the train-
ing and testing loss every 5 iterations. Two notable features 
emerge from the loss plots. First, a significant gap appears 
between those conditions in which skip-connections were 
used and those in which they were not, indicating that skip-
connections actually impeded image reconstruction. Se-
cond, mere upconvolution based methods underperformed 
the other two upsamplers, achieving its lowest testing loss 
at 188.0 as opposed to 61.2 (Up-Down Convolution) and 
115.5 (Simple Up-Down). From these results, it seems fair 
to conclude that skip-connections (as they have been de-
scribed here) should be avoided for image generation, and 



that post-convolutions after upconvolution layers do appear 
to make a significant difference, as predicted by [11]. 

These findings are borne out by the reconstructed imag-
es shown in Fig. 4. The visualizations indicate that the use 
of linear activation functions cause shimmers to appear 
around the reconstruction. This effect is caused by pixels 
becoming “dead” as they fall out of the 0-255 range, and 
can be corrected by changing display settings (e.g., thresh-
olding pixels before plotting). More seriously, the high loss 
caused by the upconvolutions and skip-connections is made 
visible in the blurriness of their respective reconstructions. 
The skip-connections in particular cause the blurred image 
to smear over a greater horizontal area. This effect is likely 
caused by a large amount of the input views remaining re-
sidually in the reconstruction: 𝑏, viewed in profile, is wider 
than it is tall and the additive effect of the skip-connections 
remembers this. 

Interestingly, the parameter-free upsizing operation per-
formed during Simple Up-Down appeared to perform on 
par with the significantly more complicated Up-Down 
Convolution. 

4.2. Experiment 2 
The setup of the second experiment is largely identical 

to that of Experiment 1, however, the size of the dataset 
under consideration was increased and a second 3D object, 
𝑡, (a table) was added. Again, a sample of data was created 
by constructing combinations of the viewing angles, such 
that 𝑆 = { 𝑥!! , 𝑥!"! , 𝑦!! , 𝑥!! , 𝑥!"! , 𝑦!! ,… }. 4,960 examples 
were then chosen from 𝑆 and split evenly into training and 
testing sets. 

Table 2. 4 conditions of experiment 2. 
Upsampler 𝒖  

Up-Down 4 

Up-Down 5 

Simple-Up 4 

Simple-Up 5 

 

Considering the findings of Experiment 1, Experiment 2 
consists of fewer conditions. Output nonlinearities were 
fixed as ReLUs and skip connections were excluded from 
all conditions. Instead, the upsampling method and the 
number 𝑢 of upsampling operations (which also controls 
the dimensionality of 𝜙 𝑥! ) were manipulated. Consider-
ing the increased amount of data, training also occurred 
over only 50 epochs. 

 
Figure 6. Training and testing loss in Exp. 2. Color 

indicates upsampling: simple (red), up-down 
(green). Dashed lines have 5 upsamples, solid 4. 
 

As show in Fig. 6, the Up-Down Convolution networks 
achieved lower loss both during training and testing, but 
showed a tendency to diverge. The loss of the 𝑢 = 5 condi-
tion spiked particularly early on. This instability may be 
related to the power of the model combined with the low 
dimensionality of 𝜙 𝑥! , which must compress information 
from a 12,288-valued matrix (i.e., the 64x64x3 image) into 
only 12 values. Training of the Simple Up-Down networks 
was more stable. 

 
Figure 7. Exp. 2 Reconstructions. Top row is ground 

truth. Bottom is predicted. 
 



The images reconstructed after 50 epochs again ap-
peared fairly crisp. Even images generated by the Up-Down 
Convolution networks before their training diverged look 
mostly correct, if a little fuzzy. 

4.3. Experiment 3 
So far the reconstructions have looked promising, and 

the training and testing plots reveal little overfitting. How-
ever, the argument can be made that the networks’ good 
performance may be caused by high correlation between 
the training and testing sets. Because the networks train on 
every single image appearing in the testing set (the differ-
ence between training and testing is not the images used, 
but the combinations of viewing angles), its task may be 
described as: 

• Learn how to copy every image viewed during train-
ing.  

• During inference, select the correct viewing angle from 
the set of memorized images. 

As such, the networks may be behaving more like nearest 
neighbor classifiers, rather than truly generative models. 

 The third experiment re-designs the learning task to 
something more generalizable. Instead, we want the net-
work to: 

• Learn a low-dimensional representation capturing per-
spective information from both viewing angles.  

• During inference, expand this representation into an 
appropriate, but perhaps completely novel image. 

These goals are accomplished by changing the manner 
in which the training and testing sets are formed. A subset 
of 7 turn-table objects were chosen and each appeared only 
during training, or during testing. Training examples were 
created combinatorially as before, but drawn from the set of 
views of the bananas, table, clock, and flower objects. The 
testing set included views of the motorcycle, teddy bear, 
and car objects. In total, a random sample of 4000 training 
and 2500 testing examples were chosen.  

Table 3. 4 conditions of experiment 3. 
Upsampler Weight-Sharing 

Up-Down True 

Up-Down False 

Simple-Up True 

Simple-Up False 

 

Due to the goal of generalizing information about 3D 
structure to novel objects, greater care was taken to regular-
ize the model and reduce overfitting. L2 regularization was 
introduced to the loss function and a 25% chance of drop-
out occurred in all trainable layers. Observe also that apply-
ing two different 𝐸 networks to the two different input im-

ages may be redundant, as feature extraction should act 
symmetrically (i.e., the network should give the same out-
put to the same two object views, irrespective of their order 
in the input tuple). As such, weight-sharing in 𝐸 is applied 
for some experimental conditions, leveraging domain 
knowledge to reduce the number of parameters. 

In order to combat divergence during training, the 
learning rate was decreased by an order of magnitude and 𝑢 
was held at 3 (ensuring 𝜙 𝑥! ∈ ℝ!"#). Otherwise, the hy-
perparameters (exponential decay rate, filter numbers, siz-
es, etc.) remained the same. Networks were set to train for 
50 epochs. 

Despite these adjustments, two of the models diverged 
while training. Interestingly, it was the Simple Up-Down, 
rather than the Up-Down Convolutional networks that di-
verged. An explosion in the L2 regularization term, whose 
value approached infinity, appears to be the cause of diver-
gence. Later work should compute this in a more numeri-
cally stable way. 

  
Figure 7. Training and testing loss in Exp. 3. Color 

indicates upsampling: simple (red), up-down 
(green). Dashed lines indicate weight-sharing. 
 



As evidenced by the loss plot, efforts to regularize the 
network were unsuccessful. Those models that succeeded 
in training the entire 50 epochs showed almost no ability to 
generalize in the allotted time, as the testing curve re-
mained nearly flat. 

 
Figure 8. Exp. 3 Training Reconstructions. Top row 

is ground truth. Bottom is predicted. 
Based on the reconstructions in Fig. 9, it appears that 

the network, when confronted with novel objects, attempts 
to reconstruct an amalgam of training set objects. For ex-
ample, the Simple Up-Down network (third image) pro-
duced a reconstruction whose green base strongly resem-
bles that of the flower, but is elongated like a view of the 
clock. The orange-yellow coloration of the testing recon-
structions is likely caused by the presence of the bananas 
and table in the testing set. The training reconstructions 
(Fig. 8) appear to demonstrate that weight-sharing seems 
like a viable option for the DVMN, but the networks may 
not have trained for long enough to make a definitive 
judgment. 

 
Figure 9. Exp. 3 Training Reconstructions. Top row 

is ground truth. Bottom is predicted. 
 

5. Conclusions 
 This work attempts to address the problem of View 
Morphing from a deep learning perspective. A CNN based 

model is presented and a number of architectural details are 
explored. Arguments have been made for (and against) the 
use of skip-connections in image reconstruction. The use-
fulness of different approaches to learnable upsampling 
was also examined. 

 The results of Experiments 1 and 2 demonstrate that the 
DVMN is capable of generating faithful reconstructions 
and producing the appropriate image in response to differ-
ent viewpoint combinations. However, experiment 3 
showed that this approach generalizes poorly to novel ob-
jects. A major limiting factor is the amount of data used. It 
may be unreasonable to expect a model of this complexity 
to learn how to infer 3D structure from viewing only 4 ob-
jects, even if the number of views from which to learn is 
approximately 4000. Fortunately, this problem can likely 
be addressed with more training time and more computing 
power. The use of computer-generated images may also be 
useful for creating 3D examples viewable from many an-
gles. 

 It is also worth noting that whereas the DVMN has 
clearly defined feature specification (extraction with 𝐸) and 
warp generation (inference with 𝐺), unlike other Image 
Morphing methods, there is no notion of transition control. 
The DVMN is constrained to producing views at the mid-
point angle. Follow-up work may experiment with allowing 
the DVMN to produce smooth warps, perhaps by allowing 
it to accept a rotation value as input, in addition to the two 
viewing images.  

Although skip-connections as described here were un-
beneficial during reconstruction, there may be other formu-
lations that improve generalization. Supplying the skips 
with their own transformation matrices (perhaps approxi-
mating the projective transforms performed in traditional 
View Morphing) may allow more information from the 
input to sneak past the dimensional bottleneck at 𝜙 𝑥! . 
Such an approach would ensure color and shape infor-
mation remains present during image generation, and 
would interpolate nicely between the deep learning and 
epipolar paradigms. 
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