Realtime Storefront L.ogo Recognition

Frank Liu and Yanlin Chen
{liuf, yanlinc} @stanford.edu
Stanford University

Abstract

Storefront brand image (logo) recognition has many use-
ful applications such as location recognition and advertise-
ment. Various methods have been proposed using local and
global feature matching. However, it continues to be a chal-
lenging area; unlike nature scene images, which are rich in
texture details, brand images often lack texture variation,
and therefore provide fewer feature points for matching. In
addition, reference and test images may be acquired with
different rotation, resolution, size, quality, and illumination
parameters. In this paper, we propose a highly efficient and
accurate approach for recognizing logos in storefront im-
ages. We separate our algorithm into two primary phases -
representation and recognition, each of which deals with a
separate portion of the logo recognition classification algo-
rithm. After training our classifier with 257 pre-segmented
storefront logos, we were able to get an 86.0% classifica-
tion accuracy on 100 test images taken from a wide variety
of locations.

1. Introduction

Extensive research has been dedicated to the field of ob-
ject recognition and various sub-problems within that field
have been explored as well. In this paper, we focus on
logo recognition, with particular interest in storefront logos.
Storefront brand image recognition has many useful appli-
cations, such as indoor localization in malls, incentivized
shopping (coupon delivery), and mobile advertising. Logo
recognition can also greatly improve any modern-day visual
search engine, such as Google Goggles. [1]

Although noiseless logo recognition on plain back-
grounds has been a well-studied subject for decades, logos
that appear in natural scenes are much harder to detect. [13]
Despite the ease with which humans can recognize store-
front logos, logo detection in computers is incredibly dif-
ficult, especially when the input training logos do not con-
tain large pixel gradients or changes in texture. Further-
more, camera-related difficulties often arise in storefront
logo classification, including, but not limited to: changes in

rotation and zoom, movement of the global camera position,
blurring of output image, and differences in illumination.

We therefore formulate our problem as follows: given
a series of training images annotated with brand names and
an query image, how do we detect all the logos (one or more
of the brands) in the query image? During the course of our
project, we experimented with various methods for feature
detection and descriptors on our storefront image database
and propose a complete framework for both logo represen-
tation and detection.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work relevant in the context of logo
recognition and summarized the key main contributions of
this paper. In section 3 it is discussed with details how the
proposed framework can be used to detect all the logos in
the query image. We present experimental results in Section
4, before concluding our work in Section 5.

2. Overview
2.1. Review of Previous Work

Most successful algorithms for correlating a series of test
images with training images rely on image matching. Im-
age matching is a long-standing problem in computer vision
that has implications in a wide variety of sub-fields, includ-
ing automated navigation and panorama recognition. [6, 5]
A popular technique for comparing and matching images is
to acquire a series of preferably invariant feature keypoints
and descriptors. There is a huge pool of existing research
for keypoint detection, including the Harris corner detec-
tor, scale-invariant feature transform (SIFT), and speeded-
up robust features (SURF). [2, 3, 4] Due to its invariance
under rotation, and zoom, SIFT has developed a reputation
as the state-of-the-art feature descriptor for object recog-
nition and image matching. Furthermore, while SIFT fea-
tures are not invariant under all affine distortions, they are
relatively robust under changes in camera zoom and twist,
which makes SIFT an ideal candidate for our system.

There is a plethora of recent work involving SIFT fea-
tures. Brown and Lowe utilize SIFT features for automatic
panorama recognition and stitching by jointly optimizing

the camera parameters of different input images using the
coordinates of matched sift features. [5] Due to the invari-
ant nature of SIFT features, their system has found lots of
success in academic settings, and is often used as the base
technique for image stitching in many commercial software
suites. Jin et al. found success using a modified version of
SIFT (SSIFT) to recognize Chinese characters in complex
documents. [8]

Another approach for acquiring invariant features relies
on histogram of oriented gradients (HOG) to acquire a set
of feature descriptors used for object recognition. [7] HOG
has found lots of success in the sub-field of object detec-
tion. The intuition for HOG is that local object appearance
and shape can often be well-characterized by the distribu-
tion of local intensity gradients or edge directions. [7] In
practice, the HOG algorithm divides the image window into
small spatial regions, or cells, and computes a histogram of
oriented gradient for each cell, before re-normalizing the
cells by looking at adjacent blocks. After tiling the detec-
tion window of normalized descriptor blocks, HOG uses
the combined feature vector in a SVM classifier (e.g. lin-
ear SVM for simplicity and speed). HOG is typically used
in select local image patches with normalized histogram of
gradient orientations features, whereas SIFT concentrates
on generating a descriptor for each interest point found in
the image.

2.2. Summary of leading novelties

Most logo recognition work in the past has relied on the
standard SIFT descriptor. After trying several feature de-
tection algorithms, we settled on PCA-SIFT, a feature de-
tection algorithm by Ke and Sukthankar. [11] Like stan-
dard SIFT, PCA-SIFT descriptors encode the salient aspects
of the image gradient in the feature point’s neighborhood;
however, instead of using SIFT’s smoothed weighted his-
tograms, PCA-SIFT applies principal component analysis
(PCA) to the normalized gradient patch. In the context of
logo recognition, not only are PCA-based descriptors more
robust to image deformations, but they are also more com-
pact than standard SIFT descriptors. Using PCA-SIFT re-
sults in significant storage space benefits as well - the di-
mensionality of feature descriptors drops from 128 in stan-
dard SIFT to at most 20 for PCA-SIFT. Furthermore, it im-
proves greatly improves the runtime for the feature match-
ing process.

Since the SIFT descriptors are only rotation invariant
around z-axis of the image plane [3], we apply several em-
pirical rotations to the x and y axis on the training images in
order to increase robustness. During the matching process,
a sliding window approach is applied to reduce the number
false positives. We further discuss this technique in Section
3.2.4.

Figure 1 provides an example of our systems final set of

Figure 1: An example of our system’s ability to match a
logo in a natural image. The bottom image is the actual
input, while the top is the database match.

matches for logo recognition. Note how our algorithms use
of the sliding window technique removes all false positives
from the logo matching process.

3. Storefront Logo Recognition
3.1. Technical Summary

We separate our algorithm into two primary phases - rep-
resentation and recognition. The representation phase takes
a series of segmented storefront logo’s and shrinks them
into a large KD-forest database of PCA-SIFT features. Con-
versely, the recognition phase takes a natural scene image
and attempts to find all storefront logos present in the im-
age. A complete overview of our approach is shown in Fig-
ure 2.

During the representation phase, we manually segment
each individual training image such that portions which do
not contain logos are cropped out. The pre-processing stage
then takes each input logo and applies a series of transfor-
mations in order to make the output PCA-SIFT descriptors
as invariant to affine transformations as possible. For sim-
plicity, we will refer to this representation stage as extrac-
tion of affine-invariant PCA-SIFT descriptors. Once that
is complete, our system then builds a KD-forest using the
extracted features.

During the matching process, we are given an input
query image. In order to improve our recognition accu-
racy, we first enhance each image by running it through a
high-pass filter. We then extract PCA-SIFT features for the
enhanced image. During classification, we employ a slid-
ing window technique to reduce the number of false pos-
itive cases - if done correctly, the window containing the
logo will have the highest number of true positive nearest-
neighbor matches.

Representation

Recognition

Enhancement

Pre-Processing

v

PCA-SIFT

Large KD-Forest Database

!

PCA-SIFT

‘Ading window

Nearest
Neighbor
Query

Figure 2: Pipeline of our approach.

3.2. System Details

3.2.1 Training Image Pre-Processing

Although SIFT is often touted as invariant to a wide va-
riety of image transformations, all SIFT (and SIFT-based)
features are actually invariant to only four of the six param-
eters in an affine transformation. [14] Because of this, we
decided to first manipulate each input logo to create a larger
set of new training images. Morel and Yu did this in their
Affine-SIFT (ASIFT) algorithm, which tilts the viewpoint
of each input image using a predetermined set of longitu-
dinal and latitudinal rotation matrices. [14] After generat-
ing the skewed images, they acquired SIFT features for all
of the new images and mapped the coordinates back to the
viewpoint of the original logo using the inverse of each of
the original homography matrices. Using this enhanced set
of SIFT features for each image, they were able to success-
fully match images of the same scene from a wide variety
of different camera angles.

We apply a very similar technique in our system to make

each input logo as affine-invariant as possible. During
the representation phase, our algorithm pre-processes each
training image by adding different levels of x-axis and y-
axis (longitudinal and latitudinal) rotation using a set of
pre-determined rotation values along the two vertical and
horizontal center axes of each image. Our system then ac-
quires features for each processed training image and maps
the features back to coordinates of the original image to cre-
ate a set of super-features for matching.

3.2.2 Extraction of Affine-Invariant PCA-SIFT Fea-
tures

As mentioned in Section 2.2, we use a PCA-SIFT, a SIFT
variant with a smaller descriptor dimension than standard
SIFT (128 values per descriptor as opposed to 20 or fewer
values per descriptor).

Once all input image PCA-SIFT features have been ex-
tracted, our system builds a single KD tree of feature de-
scriptors for each training logo. [12] The KD tree data struc-
ture is used to quickly solve nearest-neighbor queries. By

building a KD tree and properly setting the parameters for
the feature matching algorithm, we can quickly match fea-
tures from test images to those in the training image.

3.2.3 Query Image Enhancement

In our initial experiments, we found PCA-SIFT to be some-
what intolerant to image blur. Given that image blur is a
common occurrence in images taken on mobile devices, we
decided apply an enhancement step in the recognition phase
of our algorithm - in this step, each input query image is
run through a high-pass filter to reduce any blur that may
be present in the image. For sharp images, this step keeps
the original image relatively unchanged. For blurry images,
this step enhances corners and gradients in the image, both
of which are essential for our application.

3.2.4 Sliding Window

Use of a sliding window for logo recognition is a novel idea.
Here, we make the assumption that input images taken with
a camera are rarely every sideways. In other words, if a
storefront logo appears in a query image, it is likely to be
oriented in the upright direction. This allows us to apply a
series of rectangular masks over the input image with di-
mensions which approximately correspond to that of the
logo in interest. In other words, using pre-determined di-
mensions of the training logo, our system divides each test
image into regions and matches each region to find possi-
ble logos. In Figure 3, we show an example of our sliding
window technique on a query image.

For each sliding window, we acquire matches to each
KD-tree of features in the logo database. The sliding win-
dow with the maximum number of matches to each logo is
labelled as the primary window:

s; = max(m;;), Vi, (D
J

where s; is the score of the query image with respect to the
tth training logo in the database, and m;; is the number of
matches between the jth sliding window in the query image
and the :th training logo.

If the score of the query image exceeds a certain per-
centage of the the total number of features in image i,
the desired database match, our system labels that query
image with a flag that indicates the logos presence. Be-
cause our system is designed to be realtime, we do not ap-
ply RANSAC to the image matches, as the complexity of
RANSAC is more than enough to negatively impact the run-
time of our system.

4. Results

To test our algorithm, we gathered a large dataset of
307 images, each of which contained one of six different

storefront logos located in the Stanford Shopping Center.
We limited the storefront logos to well-known brands, i.e.
Bloomingdales, Macys, Nike, Nordstorm, Starbucks, and
Urban Outfitters. Out of these 307 images, we selected 250
of them for our training set, and manually segmented them
so that only the logo was visible. These 250 images rep-
resented our set of ideal logos, i.e. ones that we believed
to encompass a wide range of illuminations and viewpoints
without being too blurry. We then fed these 250 training im-
ages through the representation phase of our system. Using
a mobile phone, we proceeded to take 100 arbitrary, unseg-
mented images, each containing one of these six storefront
logos, and ran them through the recognition phase of our
system. Table 1 provides the recognition results for our sys-
tem. Tables 2 and 3 compare the performance of our system
with and without sliding windows.

We implemented our system mostly in C, making use
of OpenCV and VLFeat, two popular open source libraries
for general computer vision tasks and feature extraction,
respectively. All matrix operations and perspective trans-
forms were performed in OpenCV, while VLFeat was used
for extracting PCA-SIFT features. The results of our ex-
periment on an 2.5GHz Intel Core i5, 512KB L2 cache are
shown below. We compiled our code with all optimizations
enabled (-O3). On average, our algorithm can process a sin-
gle query image in approximately 935ms, or just under one
second. For PCA-SIFT, we used a descriptor dimension of
16.

5. Conclusion and Future Work

In this paper, we have presented an algorithm for store-
front logo recognition. We first discuss the challenges
and motivation for storefront logo recognition, before dis-
cussing existing related work. We then present our recog-
nition algorithm for storefront logos. Despite the difficulty
of the task, our proposed system is able to reliably detect
multiple logos in input images at an extremely rapid rate.
To increase the potential of our algorithm, we employ a
database of affine-invariant PCA-SIFT features and make
use of sliding windows to improve recognition accuracy.
By building a feature database from 257 different training
images of known storefront logos, our algorithm was able
to achieve an impressive 86.0% accuracy on a test set of
100 images, each containing a single logo. With a larger
database of storefront logos and more computing power, our
algorithm would be able to recognize a wider range of logos
in a shorter amount of time.

Our proposed algorithm is comparable in performance
to previous work on pre-segmented vehicle logo recogni-
tion by Psyllos etal., which, in comparison to unsegmented
storefront logo recognition, is a much easier problem. [5]
However, there are still many areas with which we can im-
prove our system, including, but not limited to:

Candidate brand logo

NORDST

=! ﬁ-’i’*ﬂkow
;e = best match

| Determines the aspect ratio of
the sliding window |

o Ity _

Each window is overlapped by
another two: one on the upper half,
one the lower half

}

Figure 3: Diagram of our sliding window technique.

Storefront logo | Detected Notdetected Total Percent recognized
Bloomingdale’s 18 3 21 85.7%
Macy’s 11 3 14 78.6%
Nike 17 2 19 89.5%
Nordstorm 9 3 12 75.0%
Starbucks 23 1 24 95.8%
Urban Outfitters 8 2 10 80.0%
Total 86 14 100 86.0%

Table 1: Results for 100 total test images of six different storefront logos.
Note the high recognition rate for our algorithm.

Storefront logo | True positive logo matches False positive logo matches
Bloomingdale’s 18 0
Macy’s 11 1
Nike 17 0
Nordstorm 9 0
Starbucks 23 0
Urban Outfitters 8 0
Total 86 1

Table 2: Logo recognition results with our sliding window technique enabled.
Only 1 false positive logo match occurred (the false positive is factored as
”not detected” in Table 1).

Storefront logo | True positive logo matches False positive logo matches
Bloomingdale’s 18 3

Macy’s 11 3

Nike 17 2

Nordstorm 9 2

Starbucks 23 4

Urban Outfitters 8 2

Total 86 16

Table 3: Logo recognition results with our sliding window technique disabled.
Without sliding windows, false positive matches are much more prevalent.

1. Occlusion detection - Occlusions, or foreground ob-
jects which partially block the view of the storefront
logo (such as people or pillars), are unfortunately very
common for storefront logos, and our system currently
has no way of directly detecting or removing them. By
integrating an occlusion detection algorithm, we can
make our system a lot more robust to foreground ob-
jects.

2. Improved recognition for multiple logos - An input im-
age may contain multiple storefront logos, and cor-
rectly recognizing all of them can greatly improve the
potential of our system. While our algorithm can, in
theory, correctly detect and label multiple logos in a
single image, we have yet to rigorously test the sys-
tem on a group of input images containing multiple
storefront logos. By performing these tests, we may
be able to better understand our methods strengths and
weaknesses, and account for them appropriately. Note
that, in our presentation, we had presented some re-
sults which included test images containing multiple
storefront logos. However, because we did not believe
that we had a large enough multiple-logo-per-image
dataset, we decided to limit our test set to one-logo
images in the end.

3. Runtime improvement - With optimized code, our cur-
rent system can only process frames at a rate of just
over 1 frame per second on an 2.5GHz Intel Core i5
with 512KB L2 cache. While this is already very fast,
we may need to improve the efficiency of our algo-
rithm for realtime applications with inputs from mul-
tiple devices. This can be done by reducing the PCA-
SIFT descriptor dimension, or by reducing the number
of feature points in our database in the representation
phase of our algorithm.

Acknowledgments

We (the authors) would like to thank Hui Chao from
Qualcomm for the project idea and sustained support
throughout the quarter. We would also like to thank Profes-
sor Silvio Savarese and Kevin Wong (our project mentor),
along with David Held, Mark Ma, and Chentai Kao for their
advice and patience throughout the past three months. We
really appreciate the entire teaching staff for the incredible
job that they have done this quarter. Thank you for teaching
CS231A!

References

[1] Google Goggles. http://www.google.com/mobile/.

[2] Harris, C. and Stephens, M., A Combined Corner and
Edge Detector, Proceedings of the Alvey Vision Con-
ference, 1988.

[3] Lowe, D.G., Object recognition from local scale-
invariant features., Proceedings of the International
Conference on Computer Vision, 1999.

[4] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. SURF:
Speeded Up Robust Features. Proceedings of the Euro-
pean Conference on Computer Vision, 2006.

[5] M. Brown and D.G. Lowe. Recognising panoramas,
Proceedings of the International Conference on Com-
puter Vision, 2003.

[6] A. P. Psyllos, C. N. E. Anagnostopoulos, and E.
Kayafas. Vehicle Logo Recognition Using a SIFT-Based
Enhanced Matching Scheme, Proceedings of Transac-
tions on Intelligent Transportation Systems, 2010.

[7]1 N. Dalal and B. Triggs. Histograms of oriented gra-
dients for human detection, Proceedings of the Con-
ference on Computer Vision and Pattern Recognition,
2005.

[8] Z. Jin, K. Qi, Y. Zhou, K. Chen, J. Chen, and H.
Guan. SSIFT: An Improved SIFT Descriptor for Chi-
nese Character Recognition in Complex Images, Pro-
ceedings of the International Symposium on Computer
Network and Multimedia Technology, 2009.

[9] B. Funt, F. Ciurea, and J. McCann. Retinex in Matlab,
Proceedings of the IST/SID Color Imaging Conference:
Color Science, Systems and Applications, 2000.

[10] E. H. Land and J. J. McCann. Lightness and Retinex
theory, Journal of the Optical Society of America , vol.
61,no0. 1, 1-11 1971

[11] Y. Ke and R. Sukthankar. PCA-SIFT: A More Distinc-
tive Representation for Local Image Descriptors, Pro-
ceedings of the Conference on Computer Vision and
Pattern Recognition, 2004

[12] A. Vedaldi, and B. Fulkerson. VLFeat: An open and
portable library of computer vision algorithms. Pro-
ceedings of the International Conference on Multime-
dia, 2010.

[13] Y. Kalantidis, et al. Scalable triangulation-based logo
recognition, Proceedings of ACM International Confer-
ence on Multimedia Retrieval, 2011.

[14] J. Morel, G. Yu. ASIFT: A new framework for fully
affine invariant image comparison., SIAM Journal on
Imaging Sciences 2.2 (2009): 438-469.

