CS231a Final Project Report:
Automatic Camera Network Topology Recognition

Christian Elder, Tony Vivoli, Judson Wilson
Mentor: Alexandre Alahi

Abstract—Setting up and manually calibrating networks of
surveillance cameras is a costly and time-consuming task. We
present an algorithm to automatically determine the external
parameters of a network of cameras from inference on pedes-
trians moving naturally through the network’s collective field
of view. Our method uses time-windowing and a voting scheme
to determine most likely tracklet matches between cameras to
find pairwise geometry between cameras. MDS-MAP, an SDP
relaxation, and the Levenberg—-Marquardt algorithm are then
used to solve the relative positions and angles of the camera set.
We performed tests using two different simulated data sources,
a Linear-Dynamical System based tracklet generator, and output
generated using the RVO2, as well as real world data from Gare
de Lausanne, a railway station in Lausanne, Switzerland.

I. INTRODUCTION
A. The Problem

As the price of digital cameras has dropped, systems of
networked cameras have become more prevalent. Furthermore,
the cost of computation has dropped low enough that video
processing is a viable option for many applications of camera
networks. Such applications include analysis of consumer
patterns in marketplaces, or use in crime prevention.

While the hardware is now mature and available on the
market, there are still many problems to solve and areas
for improvement. Manual calibration of such systems still
remains an exhausting and expensive task. Cameras that are
pre-calibrated and RGB-D (color and depth) equipped will
soon be the norm, but this only solves half of the problem.
To make real use of a network of cameras, the position and
orientation of each cameras in the world must be known, at
least relative to a common frame of reference. Traditionally
this requires many hours of manual work, and does not scale
well as more cameras are added.

In theory, this calibration information can be inferred from
the spatial and temporal information of the scene. Existing
techniques can be applied to identify moving objects within
the scene from RGB-D data. In the course of this project, we
endeavour to create an algorithm which will use the estimated
trajectories, or tracklets of the objects in the scene, combined
with statistical inference techniques and geometry, to estimate
the relative locations and orientations of the cameras from
which the data originated.

B. Algorithm Hypothesis and Overview

The underlying idea behind the algorithm is that, given the
image of a line in both cameras in a planar world, and a known
distance between points imaged on the line in each camera,

we can fully constrain the geometry between the two cameras
within the planar world.

While there are many ways that such lines and points could
be identified, we chose to use the paths of moving objects. If
an object is moving at constant speed and direction, the path
will be a perfect line. If the object produces a linear tracklet
in one camera, then a speed and direction estimate can be
determined. Afterwards, any observation by any other camera
at a later time can be extrapolated from the path in the first
camera to calculate a possible correspondence. This is enough
information to determine the relative position and angles of
the two cameras in the 2D floorplan, assuming planar motion.
This process is illustrated in Figure 1, steps 1 and 2.

Given a sufficient number of correspondences between
many tracklets in many cameras, their external calibration can
be determined. In our formulation of the problem, we do not
know which tracklet corresponds to which object, so we use
time windowing and group behaviors to help match tracklets
between cameras. Still, the process will produce many outliers
from false correspondences. We employ a voting scheme on
the geometric parameters between the orientations of camera
pairs, as seen in step 3 of Figure 1. If certain voting thresholds
are met, we create a geometric constraint between a pair of
cameras.

Once we have determined a (usually overconstrained) set
of geometric relationships between all cameras, we attempt to
find the optimal relative positions and angles of the entire set
of cameras on the ground plane, as shown in steps 4 and 5 of
Figure 1.

II. RELATED WORK & KEY CONTRIBUTION
A. Prior Art

The problem of determining relationship between cameras
with non-overlapping views is not new, and there are several
approaches to the problem. Other work has been done to infer
the network topology of the camera system [3], [S]. These
algorithms typically estimate connectivity between cameras,
in the sense of estimating transition probabilities of objects
traversing a network, where these objects are observed at
the camera nodes. These methods give little insight into the
geometric relationship between the cameras. However, these
network topologies may be useful in determining correspond-
ing objects between cameras.

In [7] Rahimi et. al. give an algorithm to determine the
relative position and rotation of cameras within a network,
however it requires that a single object move through the
network during a manual calibration phase. Similar calibration
steps are needed in [4], and the algorithm is not well detailed.

Ideal Detection

« xx,a;xx/ — {ri;}{65;}

X

3) r,

8114
Q
\.‘?
<o,
Bi13 811z

o | T

Fig. 1. Overview of the algorithm.

B. Key Contribution

Unlike other contemporary methods which require prior
scene information or manual calibration, the goal of this
algorithm is to automatically estimate the external parameters
of a network of cameras from objects naturally passing through
the network’s collective field of view. In addition, we will be
incorporating the technological advances offered by RGB-D
cameras.

We propose a series of algorithms that can generate the full
external calibration of a network of cameras using only tracklet
data which does not maintain labellings across cameras. We
rely heavily on established fundamental algorithms such as
time windowing and voting, and use localization algorithms
from wireless sensor localization. However, to our knowledge

we are the first to combine the techniques in the way proposed,
using time windowing and voting to estimate pairwise camera
calibration, and then using the pairwise constraints to generate
the calibration for the entire network.

The combination of time windowing and voting methods
employed by our algorithm are particularly well suited for the
unsupervised, automated case where tracklet correspondences
are not known.

ITII. ALGORITHM
A. Determining Correspondences

The core datapoint for our algorithm is the tracklet corre-
spondence, which we will often refer to as simply a correspon-
dence. These are chosen pairs of tracklets that are assumed to
correspond to the path of a single object on a trajectory through
the field of view of two cameras. This step is depicted in the
overview Figure 1, step 1.

We begin by chronologically ordering all tracklets across
all camera fields of view. A sliding time window of width
At is then applied to the chronologically-ordered data. Initial
correspondences are generated at each timestep by pairing
each tracklet within the sliding window from each camera with
all tracklets from all other cameras within the time window,
ignoring repeated pairs. This method attempts to find tracks
intersecting two nearby camera FOVs in a short time window,
minimizing error caused by changes in trajectory as time
accumulates.

In real world applications we would sort longer time win-
dows by the number of observations, and operate on the set
with the fewest observations, to minimize the number of ob-
jects in the scene (and thus minimize false correspondences).
In our testing with limited data, we were required to manually
make a trade-off to ensure enough correspondences to be
useful.

Once the initial list of correspondences is constructed, we
use group-behavioral cues to further match corresponding
tracklets. The list is then filtered by what we refer to as a group
shape. A group refers to a group of people that move together
through the camera frames. The motivation for this is that
groups of people will stay together the entire time they move
through the camera network, and characterising groups can
lead to better correspondence matching. (Note, this method is
useless for data generated by simulations that do not model this
behavior, so we only use it on real-life data.) To characterise a
group shape descriptor, the distances to the four closest people
to a person are used to calculate a feature vector.

The feature vector is a four element vector, where the the
element i is a weight value that is calculated from the radial
distance of the i*" closest person. The weight function used

is:
1
w(r) =9 -2
e 2

A continuous function is desirable so that if small changes
in distance of one person would not cause a large change in
the feature vector which allows the shape of a group to change
slightly and still have a high probability of matching.

if r<1
ifr>1

To calculate a shape descriptor for a tracklet, a shape
descriptor is calculated at each point along the tracklet. A
KD-Tree is used to find the nearest 4 neighbors that will be
used to determine the feature vector. The shape descriptor for
the entire tracklet is the average of the shape descriptors of
each point along the tracklet.

Once each tracklet has a shape descriptor, the previously
generated list of correspondences is filtered using these de-
scriptors. We compare the group shape of the two tracklets
in each correspondence pair by taking the euclidean distance
between the two group shapes. If this distance is greater
than a minimum threshold value, the correspondence pair is
discarded. In addition, all correspondence pairs of people that
are determined to not be part of a group are filtered out
to eliminate matching individual people to many other non-
corresponding individual people. To check if a person is not
part of a group, the weight for the first element of the feature
vector should be sufficiently low signifying that there was
usually no one within four meters of this person.

B. Calculating Pairwise Camera Geometry Relationships Im-
plied by a Tracklet Correspondence

Real world objects, such as people and automobiles will
never follow a perfectly straight path at a constant speed,
but by underlying assumptions of inertia and an intended
direction, we model their behavior as linear with smooth
velocity with additive Gaussian noise. For each tracklet in
a correspondence we produce a best-fit-line estimate of the
tracklet path using PCA to derive an orthogonal least squares
estimate. The process consists of centering the data about its
centroid and using SVD to determine directions of greatest and
least variance. The direction of greatest variance is chosen as
the direction of the line, and the perpendicular direction is
considered a dimension of noise.

Average speed is calculated as the difference in position of
the first and last points in the tracklet, projected onto the best
fit line, divided by the difference in time that the points were
measured. The time at the centroid is estimated to be average
of the first and last times of the tracklet observations.

From the lines, average speeds, and centroid-times calcu-
lated for each of the two corresponding tracklets in cameras
and j, we can extrapolate a correspondence, from which we
can generate an estimate of the relative camera positions in the
form (6;,;, rij, 0;;,:). Here, r;; is the distance between
cameras ¢ and j, i.e. the length of a chord between them,
and 0;; ; and 0;;; are the angles to each camera i and j,
respectively, from the chord drawn between them. They are
depicted in the overview Figure 1, step 2. We refer to these
parameters as a camera-relation estimate.

The calculation of (6;);;, ri;, 0;;:) is trivial knowing
the centroid, lines, and speeds of of the two tracklets. The
constraints are that the two tracklet lines must be co-linear
(with the velocity vectors pointing in the same direction),
and that the distance between the centroids must match their
estimated difference in time multiplied by the average speed
of the two tracklets.

One step that we found helps later estimates is to center
the camera origin in it’s observed tracklets. In other words,

transform the camera coordinate systems such that the cen-
troids of all the pointwise observations seen by each camera
lie at the camera origin. After the algorithm is complete,
this adjustment will need to reversed to find the true camera
position. This decreases the error dependency between the
angle and distance measurements. If the camera origin is
located relatively far away from the tracklet observations, a
small error in the tracklet path angle may lead to a rather
large error in the estimate distance between camera origins,
which is undesirable.

C. Camera Relation Estimation by means of Voting and Me-
dian Filtering

From many of these noisy tracklet observations we generate
many noisy (6, ;, i, 0j;:) camera relation estimates.
For the simple case described, we would fit a Gaussian
distribution to the camera position coordinates and determine
the most likely coordinate over all observations for the camera
pair. (This would be individually applied to every camera
pair.) However, this method has a couple of problems. The
first problem is that the angular estimates are periodic, so a
Gaussian distribution does not apply. The second problem is
that false correspondences, caused by assuming two unrelated
tracklets were generated by the path of a single object, lead to
additional observations of an unknown, second distribution.
This is illustrated in the overview Figure 1, step 3. The
green points represent measurements of true correspondences,
and the red points represent false correspondences. Note the
illustration is of a 2d parameter space, but there is actually 3
parameters: (0;; 5, 755, 0j5,)-

We are targeting a real world case where we cannot ensure
that we know an object observed in one camera is the same
as one observed in another. The intention is that there will be
only one object in the environment being observed, and it will
take a somewhat straight path through several cameras.

It is clear that we desire a low number of false correspon-
dences. The previously mentioned time windowing, and group
shape filtering techniques will help mitigate the problem, but
it will still exist.

If the true corresponding tracklets are clean enough and
linear enough, the (6;;;, i, 0;);:) camera-relation esti-
mations should occupy a rather tight cluster in the parameter
space, while the false correspondences should be distributed
more randomly.

Based on this idea, we use a voting scheme to help identify
the true correspondences, similar in principle to a Generalized
Hough Transform. Each (0;); ;, i, 0;;,;) camera-relation
estimate from each tracklet pairing of the two cameras consti-
tutes a vote in a discretized 3D parameter space. The parameter
space is divided into a 9 x 9 x 9 set of bins, and the best vote
is determined by a 3 x 3 x 3 sliding-window (stretching over
1/3rd of the space in each dimension).

There are a couple points to note about this. The angular
bins are periodic, so care must be taken with the sliding
window to allow wrapping. Also, distant outliers could stretch
the range of the voting space in r; ;, so we size the bins such
that 8 out of 9 equally sized bins encapsulate the range of 0

to the 90" percentile largest r; ;, and allow the 9" bin to
account for extra margin.

This peak window does not exhibit periodicity in the
dimensions for the angles (since it is bounded), so we can
now apply a center estimate. We use the median filter in each
dimension of (6, ;, 7, 0;);,:) over the votes in the peak
window.

We only accept this estimate if there are at least 5 votes
total. The acceptance threshold is 50% of votes when there
are less than 10 total votes, and 10%-20% of votes otherwise.
This ensures a certain qualitative level of confidence in the
vote, even for low sample sizes.

These thresholds build in a certain amount of acceptable
false correspondence tolerance. Intuitively, if the correct clus-
ter of votes is tight, it will only be accepted if there is a high
enough ratio of true correspondences to false correspondences,
assuming the false correspondences are widely distributed.
This is an important point to understand when analyzing vote
data and system performance.

To see examples of the voting scheme results on simulated
data, see Figures 3 and 4 in Section IV: Experiments and
Results.

D. Camera Localization and Pose Estimation

The estimation of the camera-relation geometry between
pairs of cameras is carried out for every pairing of the cameras,
and results in a possibly overconstrained set of distances and
angles. These constraints can be viewed as an undirected
graph, with each node as a camera and each edge representing
the relative geometry between them. The graph may be fully
or partially connected. We will only discuss cases when the
graph is connected, i.e. there is a path from any node to any
other node, depending on whether the voting procedure rejects
or accepts the best voting window.

From these pairwise geometric relationships we can
estimate the global location and pose of all the cameras as
a set, up to a rotation and a translation. This is depicted
in the overview in Figure 1, step 4 and 5. The problem
of finding both the optimal location and angles, in a least
squares sense, is both non-convex and nonlinear, but there
are methods to produce approximate solutions. We use three
different methods, all with origins in the large body of work
regarding sensor localization: MDS-MAP, Biswas’ and Ye’s
SDP relaxation method, and Levenberg—Marquardt nonlinear
least squares optimization.

1) MDS-MAP Localization: MDS-MAP is a based on the
(MDS) Multidimensional Scaling technique from statistics,
with adaptation to the wireless sensor problem. Given a set
of n sensors, the traditional method would require distance
measurements r;; from all n» nodes to their n — 1 neighbors.
Using SVD based techniques, the algorithm returns the best
locations estimates {x;} to minimize the cost c:

2
N (TR

,J

This requires having full connectivity, but a simple method
is used to fill the missing values. Any missing distance is
estimated by measuring the shortest path distance of known
distance estimates. (Therefore there must be a known path
from every node to every other node on the graph.) We perform
this step using a dynamic programming approach.

Note, in general, these estimates for the missing paths
will be longer than the actual path. Some literature discusses
weighting these distances to decrease path length, but we
followed the method of not scaling the distances.

It’s also worth noting that these shortest-path distances,
while non ideal, may help yield better results than other cost
functions that simply omit the missing distance constraints.
Those other methods may allow the structure to “fold inwards”
when the graph is weakly connected, to reduce cost. However,
this solution is likely not correct, because it implies that there
are other nearby neighbors in the folded solution that should
generate pairwise correspondences, but we know that they did
not. Therefore, the distortion of the shortest-path distances
may often produce a better result.

We refer you to the literature for further details about the
MDS-MAP algorithm. Shang et al. introduce the method in
[8]. Performance analysis and a simple formulation of the
algorithm are given by Oh et al. in [6]. The algorithm is
widely used and there are many other sources of information.

The MDS-MAP algorithm produces an optimal position-
ing up to a translation, rotation, and reflection (since it is
based on distances only). We can now easily estimate the
camera angles. Using the solved locations, for each relevant
(0ifij > i, 05)5,5) constraint we can produce a vote for the
absolute angle of the cameras ¢ and j. We simply use the
average of these absolute angle votes as the estimated rotation.

To resolve the issue of the positional reflection ambiguity
(which does not exist when the camera angle relations are
considered), we generate a second estimate by reflecting
the position estimates about one of the axes, and re-
computing the absolute angles. We then choose the set of
position and angles that produces the best angular cost,
defined as follows: Assume the n cameras are located at
{(z1,11), (z2,y2), , (©n,yn)}, and we have a set
of m relation constraints of the form 6;; ; which are the
angle of camera ¢ as measured from the chord between
camera ¢ and camera j. The cost of a set of absolute
camera angles {a1, g, ..., ay }, parametrized by the locations
{(z1,91), (x2,y2) ,...,(zn,yn)} and the angle constraints
{03)i,;} can be formulated as a sum of squared differences:

Clws vy (0,3 ({ait) =)
DOHD DIV <sz' — (03155 +atan2(y; —y;, ;i — xj)))

Note that because the angles are periodic, we must consider
the difference terms in their periods that minimize this error.
Once they are aligned to the correct period, our angle solution
method by averaging, discussed above, is the minimizer of
this cost for a given {(x1,v1), (z2,¥2) ,...,(%n,yn)} and
the corresponding {a, as, ..., a, }.

This procedure produces an estimate of the location and
rotation of all of the individual cameras, up to a global
translation and rotation.

2) SDP Relaxation Method: In general, choosing the posi-
tions of the cameras that minimize the sum-of-squared-error of
the position distances and the estimated constraints is a non-
convex problem. Biswas and Ye presented a relaxation of the
problem in the form of an SDP. We refer you to their paper [1]
for the formulation, although the formulation in [9] is simpler.

The method has potential benefits MDS-MAP. It does not
require complete pairwise distances between every node. It is
also solvable using the readily available convex optimization
software cvx by CVX Research, unlike some other approaches.

One drawback of the method is that it requires 3 anchor
locations of known location (up to a rotation and translation)
to function. Because we do not have anchors, we first
started with the MDS-MAP solution. We then randomly
choose 3 nodes to act as anchors, solve the SDP, and
see if the solution improves cost. In this case we use the
following positional cost function for positions of n cameras
{(z1,91), (z2,92) ,...,(zn,yn)} given distance constraints
between cameras of the form {r; ;}:

C{T‘i,j}({(‘rlayl)7 (szyQ) a"'v(xnvyn)}) = 9
S (TR yj>|)

If the cost has decreased, the new answer is accepted as
a better candidate solution. Then the processes is repeated:
choosing 3 random points as anchors, solving the SDP, and
comparing the cost. When no improvement in cost is made
after a fixed number of attempts, the solution stops.

The camera angles are calculated using the same averaging
method as was done when using MDS-MAP. Like MDS-MAP,
because this method initially localizes using only distance
constraints, there is a reflection ambiguity in the position
solving step. The camera angles are computed for both the
original position solution, and its reflection about an axis.
The solution that produces the lowest angular cost is chosen
as the best fit.

3) Levenberg—Marquardt Nonlinear Least Squares Opti-
mization: The Levenberg—Marquardt algorithm is a method
for solving non-linear least squares problems. Given a set of
“residual” functions {f;(xz)}, where z is a vector, and f;(z)
is not necessarily a linear function, the algorithm attempts to
find a solution to the following problem:

arg min Z(fi(z))?

The behavior of the algorithm is adaptive, and as suggested
by Ellis and Hazas in [2], this method, which they call NLR
(for Non-Linear Regression) has some distinct advantages over
MDS-MAP in sensor localization, especially in the case when
angular relationships are known. They claim that angular costs
also help maintain the layout structure of the sensors.

We use the same cost residuals as Ellis and Hazas. In terms
of the equations given above, and camera positions {(z;,y;)}

and absolute angles {«;} we have a distance cost term for
each pairwise distance constraint 7;;:

fdﬂ'j({(xlvyl)a 7($n7yn)}a {alv "'7a7l}) =
(i = 25)% + (i — y3)°l| =74

and angular cost terms parametrized by each camera’s angular
estimates 6;); ; that constrains the angle between camera 7 and
the chord drawn from (z;,y;) to (x;,y;):

fa,i\ij({(55171/1)a cee 7(xn7yn)}7 {Oél, ""a’ﬂ}) =
a; — (0355 + atan2(y; — y;, x; — ;)

The implementation of this cost function must choose the
period of each angle that minimizes the cost.

Conceptually, we can see from the underlying idea of these
geometric constraints that this algorithm has some powerful
advantages over other methods. Placing cameras using only
distance information requires a certain level of triangulation
to be fully constrained. However, with the non-linear least
squares method, any connected network of cameras will be
fully constrained by a distance and an angle constraint. This
is very advantageous for various camera network topologies
or situational conditions where the cameras are connected by
relatively few constraints, such as a network of cameras in a
mine-shaft. It also helps when poor voting results in a small
set of constraints.

After applying one of these localization and orientation
algorithms, we have solved the problem up to a global rotation
and a translation.

IV. EXPERIMENTS AND RESULTS

For our experiment, we used three different sources of data.
First we used a simple Linear-Dynamical System model to
generate non-linear tracks. We then used the RVO2 library
to generate more human-like tracks. Finally, we tested our
methods on a set of real-world camera data collected at the
Lausanne railway station in Lausanne, Vaud, Switzerland.

A. Simple LDS Simulated Dataset

We produced a simple algorithm for generating track and
tracklet data using a linear dynamical system (LDS) model of
a moving object. First, a set of cameras was created and placed
in the world. Then tracks were generated. Track coordinates
(z¢,y:) were computed for each timestep according to the
following LDS:

£ 1010000 0][a
Y1 010100 0 0w
zh 0010100 0]
fppy = Y| Z [0 00 1010 0 gy
Zf 000010 1 0|]af
Yl 0000010 1|y
Z 0000GO0GOT1 0fla
] 000000 0 1] [y

The initial x; was chosen such that (z,y;) were at random
locations on the bounding box of the cameras in the world.

—~

-10

Fig. 2. 20 tracks and their observed tracklets generated by the LDS, in
our experimental camera placement. Tracklets chosen randomly using our
“Standard Settings.”

Velocity (z},y;) was chosen to point in a random direction
inward from the bounding box, with speed drawn from a
Gaussian distribution, and then clipping values outside a given
range to the nearest boundary of the range. The higher order
difference terms (z,y;’) and (z’,y;’) were also formed by
drawing magnitudes from Gaussian distributions and clipped,
and using the direction of the initial velocity.

To form the observations, each (z;,y;) was calculated and
independent Gaussian observation noise was added. Visually,
the tracks appear to be similar to either noisy lines or noisy
parabolas. See Figure 2 for sample tracklets generated using
our standard settings, in our standard camera configuration.

Tracklets are then formed by finding the subset of the tracks
in each camera field of view, and transforming them to the
cameras’ coordinate systems. Note that in our test cases the
cameras were not overlapping. In cases where they are, it
would be better to use different additive observation noise for
each camera.

Once the tracklets are generated, true and false correspon-
dences are created by randomly choosing how many tracks
are in a time window. Generally, a probability mass function
is used to choose between 1 to 8 tracks in any given time
window, although for most tests we randomly choose between
1 and 3 tracks in a given time window.

We completed a series of tests, presented in Table I. The
goal was to demonstrate behavior for different kinds of input
to qualitatively see if the expected behaviors resulted. For
a variety of input conditions using the camera configuration
shown in Figure 2, we tried the algorithm with all 3 different
localization/orientation algorithms, and provided the cost and
error (which will be described shortly). These are single test
instances, so they have questionable statistical significance, but
they were chosen with very little supervision. We specifically
did not compare errors and search for specific characteristic
behavior. In the future it would be better to randomly generate
series of tests using the same sets of parameters, and compare

the average error of all the tests generated with the same
parameters. We were unable to do this at this time.

The position cost is as defined in Section III-D2 where it
used to compare potential solutions in the SDP optimization,
and the angular cost is described in Section III-D1 when
discussing how to solve for camera angles after computing the
MDS-MAP camera position solution. In general these costs
can be compared between algorithms when using the same
test input, because the correspondence voting results are the
same for each version of the algorithm.

Positional error is defined as the minimum sum of squared
differences between the estimated camera locations and the
ground truth locations, when applying any arbitrary global
rotation and translation to the estimated positions (because we
only know the solution up to a rotation and translation). The
optimal rotation / translation are solved using the Procrustes
transform (MATLAB function procrustes).

Angular error is defined in a similar way to the positional
error, with some special considerations. It is defined as the
minimum sum of squared differences between the estimated
camera angles and the ground truth camera angles, when
applying an arbitrary global rotation to the estimated cameras.
We approximate the optimal, error minimizing rotation as
the angle-mean of the individual differences of the estimated
camera angles and the ground truth camera angles. The angle-
mean is defined as the angle of the sum of unit vectors
pointed in the direction of each angle being averaged over.
This technique is used because the angles are periodic, so
calculating a “mean” is ambiguous. Adding this angle to all
of the camera angles, the differences between the ground truth
and offset estimated camera angles are calculated, squared,
and summed. Note the differences are calculated using the
angle periods that minimize the differences - an important
implementation note.

We also present “Connectivity” in Table I, which is a
count of the number of pairwise geometric constraint tuples
(03)i,j » 74,5 05);,:) from our voting scheme, vs. the maximum
number possible.

These tests were all performed with the same ground truth
camera setup, consisting of 4 cameras in close proximity, as
shown in Figure 2.

The first two tests in the table were constructed such that
the tracks were completely straight with constant velocity,
no observation noise, and no false correspondence tracklet
matches. As expected, if there enough tracklets, the pairwise
geometric constraint voting picks the exact distance and angle
constraints (because all votes are identical), and MDS-MAP
chooses the perfect solution (to within working precision).
The SDP and LM NLR algorithms do as well, which is
expected, since they use the MDS-MAP solution as a starting
estimate. The second test has poor connectivity, due to too
few tracks, and we can see that MDS-MAP and the SDP
relaxation have very bad error, even though the positional cost
is very low. This suggests that the distance constraints do not
properly triangulate at least one camera, so positional cost
of the localization solution is small while the actual error is

CQQQ QQQQ.
L&
& &
QC/” QCJ” Q QQ
\.9 \.wQ 6\@q 9] S g
W s & & <&
& ' HoF 9 o o N
U S T T
. %o\e‘%% . @5" & qx%o\ b‘b‘bﬂ &r‘b wr‘b 5&6
$0\ éo\ C/OQ \)O %\60 %\‘b&\ %\(ﬁs\ %\(D"Q
Test Tracks 100 50 400 400 400 100 400 1600
Connectivity 6/6 4/6 6/6 6/6 6/6 5/6 5/6 6/6
Pos. Cost | 0.000 0.80 | 0.013 0.14 0.033 | 13691 13.73 1.49
A % Angle Cost | 0.000 6.00 | 0.002 0.000 0.014 1.66 0.88 0.019
== Pos. Error | 0.000 3571.86 1.04 020 1.58 | 311.29 284.11 254
Angle Error | 0.000 6.00 | 0.000 0.000 0.000 0.12 0.41 0.004
g Pos. Cost | 0.000 0.80 | 0.012 0.13 0.033 3.07 0.73 1.49
E = Angle Cost | 0.000 6.00 | 0.002 0.000 0.014 | 0.021 0.016 0.019
2 Pos. Error | 0.000 3571.86 | 1.03 0.21 1.59 4.89 9.68 2.54
e Angle Error | 0.000 6.00 | 0.000 0.000 0.000 | 0.017 0.033 0.004
~ Pos. Cost | 0.000 0.000 | 0.008 0.081 0.020 1.02 046 0.87
E Angle Cost | 0.000 0.000 | 0.001 0.000 0.014 | 0.023 0.010 0.011
s Pos. Error | 0.000 0.000 1.00 0.10 1.57 2.70 690 1.13
= Angle Error | 0.000 0.000 | 0.000 0.000 0.000 | 0.016 0.029 0.003

TABLE I: Selected Results - Performance using MDS-MAP, SDP relaxation and LM NLS over selected examples to
demonstrate characteristic behavior of the algorithms. Note “OFC” stands for “Zero False Correspondences”.

much larger. The angular cost is high, but these two methods
solve the camera angles after position, and the poor positions
cause this high angle cost. The LM algorithm produces a
zero-error solution (to within working precision). This is to
be expected, since the relation graph is fully connected, so
fully constrained by perfect constraints, when you include the
angular constraints. The algorithm uses location and angular
constraints to choose both the positions and angles of the
cameras, simultaneously, so is able to arrive at the correct
solution.

Tests 3-5 show a few cases of non-ideal measurements,
adding observation noise, curvature, and speed changes to the
tracks. All 3 cases are constructed such that they never have
multiple tracks in the same time window, and thus no false
tracklet correspondences. We can see that, compared to all the
tests overall, they perform quite well, with the LM algorithm
consistently performing with a slight edge. We attribute this
performance to the lack of false correspondences. We can see
in Figure 3 the relatively few outliers compared to the cluster
in the peak window.

Tests 6-8 use our standard track generation settings (noise
and curvature as bad as or worse than tests 3-5), with 100,
400, and 1600 tracks, where the tracks of the smaller test
samples are subsets of the tracks of the larger samples. Each
time window has either 1 track with 30% probability, 2 tracks
with 40% probability, or 3 tracks with 30% probability. When
multiple tracks are in the same time window, 30% of tracks
will intersect only a single camera’s field of view. All other

80 o . ° . o
o 2 0o o
60 ° ° My o o
o o g
240 ° o0 o 5 Orog
w o @ o S o
200 Ow o
© o0& -2l
ol © © ° o
-2 0 2 0 20 40 60 80
e1\1,2 r1,2
o
2 o
o
S8 %°
o
o R
(==}
go ° o %
o o]
-2 0
[}
-2 0 2
Oap1,2

Fig. 3. Voting results for Test 5, for camera relations between cameras 1
and 2. Votes in the peak window are solid dots, and those outside are hollow.
The chosen median value is the red-x. Note this is the relation between the
camera observation centroids, not their origins.

tracks have a tracklet intersecting 2 cameras’ fields of view.
We can see in Figure 4, that the false correspondences in
Test 7 produce many more outliers in the camera relation
votes for the pairing of camera 1 and camera 2, compared
to Test 5 (shown in Figure 3) which uses the same tracks
except some tracks fall in the same time window, causing false

400
0 SR% %
300 O% So oo 0
o o ™ * Q 0® o
—— 200 ° o o = 0 o
=) O
’ Q&@OOZ © o °
e}
o @0
o (o]
0 100 200 300 400

Oi1.2
o
(o]
o
)

) . & 400

9112

Fig. 4. Voting results for Test 7, for camera relations between cameras 1
and 2. Votes in the peak window are solid dots, and those outside are hollow.
The chosen median value is the red-x. Note this is the relation between the
camera observation centroids, not their origins.

40

30F

20

10+

_20 L L L L L L L J
-30 -20 -10 0 10 20 30 40 50

Fig. 5. Test 7 LM NLR result camera locations and orientations (solid) after
a global rotational and translational alignment to the ground truth (dashed).

COI'I'CSpOIldeIlCGS .

Generally we see better performance with more tracklets,
an effect you may expect to see. The increase in connectivity
for the 1600 tracks case is also promising, but again, these
single tests aren’t statistically significant for drawing hard
conclusions. We can see that MDS-MAP performs the worst,
followed by the SDP relaxation, with the LM algorithm
performing the best.

We can see that the algorithm works, and provides sensible
results and characteristic behavior, for the data as generated.

To visualize a result, see at Figure 5. This is the resulting
positions and camera angles using the LM NLR algorithm, af-
ter applying the optimal translation and rotation for alignment
(because we can only solve up to a translation and rotation).

B. RVO2 Simulated Dataset

In addition to the initial simulator described previously,
a second, more realistic simulator was implemented. This
simulator utilizes the RVO2 library developed at the University
of North Carolina at Chapel Hill to model the interactions
between pedestrians and obstacles moving through a scene.
With this simulator, scene geometry, camera locations, and
pedestrian attributes such as preferred velocity and frequency
and location of entry and exit are easily controllable,
enabling for a better approximation of real world data
while retaining a controlled test environment. An example
environment is shown in Figure 6, which is geometrically
similar to the Lausanne train station. Unfortunately, the
computational requirements of the RVO2 library limited
testing to simulations of two hours with up to 15 pedestrians
in the scene at a given time.

Testing with this more advanced simulator was composed
of determining locations of groups of cameras (see Figure 6)
under various traffic frequencies using the three algorithms
described previously. The groups tested were cameras 1 and
2, cameras 2 and 3, cameras 1, 2, and 3, and cameras 5, 6,
7, 8, and 9, and pedestrian frequencies were 1, 5, and 15
pedestrians in the network’s field of view at a given time.

Under these testing conditions, we saw the corroboration of
several of the conclusions from testing with initial simulator.
In the majority of testing, the LM NLS algorithm produces
the least total error between estimated and actual camera
locations. Furthermore, as the number of pedestrians in the
scene increased, the increase in the number of tracks improved
the error of all three algorithms. However, this increase has the
secondary effect of introducing more false correspondences
due to more pedestrian observations per time window, which
seems to have negated some of this benefit. As the number
of pedestrians in a single time window increases to the levels
expected in a busy train station corridor, we expect that the
number of false correspondences generated would completely
obscure our Hough space clustering. Therefore, an augmented
correspondence algorithm is required beyond 15 pedestrians
per time window.

It should be noted that, in the test of the group of 5
cameras with 15 pedestrians in the scene, not enough
graph connections were established to perform any of the
localization algorithms. Upon closer inspection, this may
have been caused by the tendency of individual pedestrians
to walk across the scene at a approximately constant vertical
displacement, thus appearing in only cameras 6, 8, and 9
or only in cameras 5 and 7. This led to high connectivity
within these two subgroups, but very little inter-subgroup
connectivity.

C. Lausanne Railway Station, Real World Dataset

Our final dataset comes from a camera network installed in
Gare de Lausanne, a railway station in Lausanne, Switzerland,
provided by Alexandre Alahi. Figure 7 illustrates the camera
layout. The network uses RGB-D cameras to detect moving
objects through the station, and a software pipeline is used

in nn nn an £n an 70

Fig. 6. Layout of simulated corridor with numbered camera fields of view
overlay. The corridor consists of 8 entrances/exits, separated by grey walls.

Fig. 7. Layout of corridor at Gare de Lausanne with numbered camera fields
of view overlay

to preprocess the data, creating tracklet data which describes
the motion of objects through the cameras fields of view. The
data is given in planar (x,y) coordinates for each timestep, in
the coordinate system of the observing camera, as the object
moves along a track. Object labels are not tracked between
cameras.

The two data samples we were given were of 23 and 40
minutes in length, during times of moderate crowd density.
The data contained fields of view for all 33 cameras, of which
a representative subset were tested, due to computational
constraints.

We began testing using cameras 1, 18, and 19. Because
there are often several objects within the network’s field of
view within a designated time window, the data was filtered
to remove times during which a large crowd is visible. This
filtered data is then processed by the algorithm described
in section III. We compare results of the relation between
overlapping cameras 18 and 19 with the group filter turned
on and off. As shown in Figures 8 and 9, the voting scheme
found a strong cluster in both instances, using a 25% threshold
for peak window vote acceptance. The result using the group
filter has ~82% fewer points, with a larger fraction in the
peak voting window than the unfiltered results: 129 out of
336 votes vs. 546 out 1958 votes. We consider this a strong
indicator that the group shape filter can produce better results,
at least in the correct conditions. Camera 1 had relatively few
observed tracklets, thus the ratio of false correspondences was
too high to accept a voting window.

We also tested using cameras 4,5,7,23 and 25, which are
within close proximity in the cooridor. At 25% peak voting
window threshold, the voting method found 1/10 of the possi-
ble pairwise camera relations with the group shape filter turned
off, and 4/10 with the filter turned on. Neither set contained
a connected graph of camera relations. Using a 15% peak
voting threshold, these fractions were 6/10 for the unfiltered
case and 9/10 for the filtered case. We can see that the group

B33

0 100 200 300

92|2,3

Fig. 8. Voting results for the Gare de Lausanne test data, relation between
cameras 18 and 19. This is without applying the Group Filter. Votes in the
peak window (25% acceptance threshold) are solid dots, and those outside
are hollow. The chosen median value is the red-x. Note this is the relation
between the camera observation centroids, not their origins.

401
[} b3 @
,_:" 30 ‘%:':t‘ . ®%
‘oog” ”
20(9o %
[e]
(o]
o]
-3 -25 -2 -15 150
%23
© % 0%°
2 g}«n ©
o & & é’@ 100
@ ®
&0 ot &
[N o0 ® Q?
8 o & o
—2t0 @O o 24 °
Sl %
-2 0 2
e3|2,a

Fig. 9. Voting results for the Gare de Lausanne test data, relation between
cameras 18 and 19. This is after applying the Group Filter. Votes in the
peak window (25% acceptance threshold) are solid dots, and those outside
are hollow. The chosen median value is the red-x. Note this is the relation
between the camera observation centroids, not their origins.

shape filter tends to produce more camera relations, however
visually inspecting the resulting camera layouts in Figures 10
and 11 and comparing to Figure 7, it is not clear whether the
result is better.

Generally it appears that the cameras in Figures 10 are
placed in a somewhat correct placement, but reflected, with
very bad angular alignments. The result in Figure 11 appears
much worse in terms of placement and angular alignment.
Visually juding the votes between cameras 4 and 5, shown in
Figure 12, it appears the false correspondences are not well
distributed, with a high dependence on angle. We believe this
is caused by unequal angular distribution of tracklets: most
tracklets are parallel to the walls.

1001

80

60

40+

Fig. 10. Results for Gare de Lausanne data using LM NLR algorithm without
group shape filtering.

60
40

20

-100 -50 0 50 100 150

Fig. 11. Results for Gare de Lausanne data using LM NLR algorithm after
group shape filtering.

Fig. 12. Voting results for the Gare de Lausanne test data, relation between
cameras 4 and 5 with a 25% peak bin voting acceptance threshold. The peak
bin was not accepted, yet there is a dense cluster region.

V. CONCLUSIONS

As we have seen in the simulations, when presented with
data from a few objects passing through a scene, the presented

algorithm can correctly estimate the external parameters of a
network of cameras. However, as seen from the real-world
data, having too many people in the field of view will result
in a high number of false correspondences, which leads to
errors in parameter estimation. To retain the effectiveness of
the algorithm during periods with visible crowds, a heuristic
to remove false correspondences must be implemented. The
radial grouping heuristic presented here proved to be simple
and provide improvement in some situations, but it is by
no means the only method of filtering. Another approach,
similar to the algorithms presented in the related works, could
involve first determining the network’s approximate topology
and applying weights to subsequent correspondences based on
these graph connections.

If the ratio of true and false correspondences cannot be kept
within a usable threshold for the voting scheme, a more elab-
orate method is needed to classify true/false correspondences.

Also, to decrease the noise of the true correspondences, we
could attempt a better fit to each tracklet. Presently we are
using a line to estimate the entire tracklet, but a curvilinear
path based on a Kalman Filtering or other technique could
better approximate the speed and direction of tracklets as an
object enters and leaves the field of view of the cameras.

Overall, the algorithm shows promise, and we have demon-
strated the viability of our contributions. The voting scheme
works very well in our simulations, and will likely work much
better in real world situations with much more tracklets taken
with fewer objects in the scene. The overall algorithm can
properly place cameras on the ground plane to within an ac-
ceptable amount of error in situations where tracklet matching
between cameras has some low to moderate ambiguity, but will
poorly-tolerate cases with too many objects in the scene in a
given time window.

REFERENCES

[1] P. Biswas, Y. Ye, Semidefinite programming for ad hoc wireless sensor
network localization, in 3rd Annu. Symp. Information Processing in
Sensor Networks, 2004, pp. 46-54.

[2] C. Ellis, M. Hazas, A comparison of MDS-MAP and non-linear regres-
sion, in Indoor Positioning and Indoor Navigation (IPIN), 2010 Int. Conf.,
2010, pp.1-6.

[3] T. Ellis, D. Makris, J. Black, Learning a multi-camera topology, in Joint
IEEE Workshop on Visual Surveillance and Performance Evaluation of
Tracking and Surveillance (VS-PETS), 2003, pp. 165-171.

[4] O. Javed, Z. Rasheed, O. Alatas, and M. Shah, KNIGHT: a real
time surveillance system for multiple and non-overlapping cameras, in
Proceedings of 2003 International Conference on Multimedia and Expo,
2003, pp. 1-649.

[5] D. Makris, T. Ellis, J. Black, Bridging the gaps between cameras,
in Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2004, pp. I1I-205.

[6] S. Oh, A. Montanari, A. Karbasi, Sensor network localization from
local connectivity: Performance analysis for the MDS-MAP algorithm,
in Information Theory Workshop (ITW), 2010, pp. 1-5.

[7]1 A. Rahimi, B. Dunagan, and T. Darrell, Simultaneous calibration and
tracking with a network of non-overlapping sensors, in Proceedings of
the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2004, pp. I-187.

[8] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz, Localization from mere
connectivity, in Proceedings of the 4th ACM international symposium on
Mobile ad hoc networking & computing, 2003, pp. 201-212

[9] P. Tseng, Second-order cone programming relaxation of sensor network
localization, SIAM J. Optim., 2007, vol. 8, no. 1, pp. 156185.

