
Automatic Labeling of Lane Markings for Autonomous Vehicles

Jeffrey Kiske
Stanford University

450 Serra Mall, Stanford, CA 94305
jkiske@stanford.edu

1. Introduction
As autonomous vehicles become more popular, there

is an increasing need to reduce the cost of the expensive
equipment outfitted on each car. Traditional sensors for au-
tonomous vehicles include an expensive lidar (˜$70,000) to
accurately determine depth near the car. Generally, if the
equipment is damaged, the only solution is to purchase an-
other.

In this project I will build a system to automatically label
highway lane markings. These labels will be used to train
a deep neural network that will be able to predict lanes us-
ing images from inexpensive cameras. Removing the lidar
completely from autonomous vehicles is beyond the scope
of a quarter-long project. Future projects can use my system
to label cars, road signs, and other obstacles in the road as
inputs to other machine learning systems.

Existing solutions to this problem such as the Mobileye
Lane Departure Warning System are effective at a range of
only 30 meters [3]. My goal is to predict lane markings be-
yond that. I will combine data collected from a Velodyne
lidar (HDL-32E), HDR video streams, and a high preci-
sion GPS and build a large dataset of labeled lane markings.
Eventually this data will be used to train a neural network
which will predict lanes from only photos.

2. Related Work
2.1. Review of Related Work

Before implementing my project, my research group was
using a traditional computer vision approach to label lanes.
The system would look in the bottom 2/3rds of the image
and find the two largest white or yellow areas closest to the
center of the frame. While this approach correctly labeled
lanes in some situations, it failed when there was poor light-
ing or occlusions. When testing the neural network, it was
obvious that there were too many erroneous labels because
the system was unable to consistently predict the lanes.

This project implements a system proven to be success-
ful on other autonomous vehicles. Specifically, Profes-
sor Sebastian Thrun’s research group fused Velodyne point

clouds with camera images to find curbs, lane markings, and
cars. My project is the first step to implementing many of
these systems.

2.2. Main Contributions

Instead of using traditional computer vision with a sin-
gle camera, this project will fuse inputs from many dif-
ferent sensors. I use position from a high precision GPS,
depth from a Velodyne Lidar, and color information from
two stereoscopic cameras. This method requires all compo-
nents to be time-synchronized and calibrated. To calibrate
sensors, I use a combination of automatic and manual ad-
justment. Fusing the data from each sensor into one map
allows me to generate highly accurate lane labels for 20-
hours of driving data.

3. Technical Information
3.1. Summary

The goal of my project is to fuse three independent
sources of data to create accurate labels for lane markings.
To do this I need to synchronize timing and calibrate each
source with respect to the others. I implement manual and
automatic techniques to calibrate each sensor and combine
all data into a single map. From this map, I remove points
that are not lane markings using thresholding. These points
are easy to find because lane markings are highly reflective,
and we know the approximate position relative to the Velo-
dyne. Using hierarchical clustering, I can remove noise and
ensure there is a one-to-one mapping between labels and
lane markings. Using this method, I am able to quickly and
accurate label lane markings better than the previous sys-
tem.

3.2. Building a Dense Map

Velodyne outputs a set of 64,000 data points at 10 Hz,
each with a 3D coordinate, a measure of reflective inten-
sity, and the laser index. The Velodyne also reports local-
ization information with accelerometers, gyroscopes, and a
low-resolution GPS. Highway lane markings are more re-

1

Figure 1. Lanes are reflective so they have a higher intensity value

flective than the surrounding asphalt, so the reported laser
intensity value is larger. In Figure 1, green points indicate
high reflectivity and red indicates low reflectivity.

Individual Velodyne point clouds are too sparse to label
lane markings further than 20 meters away. With a single
point cloud the Velodyne can see the closest lane marking,
at best. To label lanes farther than that, we need to combine
clouds from different points in time into a single map.

With accurate position and time information, we can
overlay multiple point clouds into a single view. The GPS
unit mounted on the car reports position with centimeter ac-
curacy. A crucial step in combining point clouds is cali-
brating the GPS to the Velodyne. Figure 2 shows what can
happen when the two units are not calibrated with respect
to each other.

Figure 2. Integrating point clouds with an uncalibrated GPS yields
blurry, unrecognizable results1

Although there are automated ways of finding this cali-
bration, manual calibration works well if we consider each
point cloud relative to the GPS’s reference frame. We can
make this assumption because both the Velodyne and GPS
are rigidly mounted to the car – a change in GPS position
is the same as a change in Velodyne position. The system

1Image from Unsupervised Calibration for Multi-beam Lasers[1]

only needs to be calibrated for errors in rotation between the
Velodyne and GPS.

Given a point cloud (P), the GPS to Velodyne rotation
offsets (Rcalib), and the change in position given by the
GPS(T∆position), we can start overlaying point clouds from
different points in time (P ∗).

Rcalib ∗ T∆position ∗ P = P ∗ (1)

Extending this method to multiple point clouds, we ob-
tain the dense map seen in Figure 3. Using the GPS to Velo-
dyne calibration, we are able to obtain 3D maps of entire
highways. This step makes it possible to reliably extract
lane markings from the Velodyne’s point cloud.

Figure 3. Using a correct calibration produces recognizable objects
in the point cloud

3.3. Time Synchronization

Synchronizing the timing between all three data sources
is crucial for building the map described in Section 3.2.
Synchronizing this system is difficult because each individ-
ual component has its own clock. The GPS and Velodyne
operate on different GPS units, and the cameras use the
computer’s UTC time2. Synchronizing the clocks is also
complicated by different data refresh rates. The GPS re-
ports position at 200 Hz, the Velodyne reports a point cloud
at 10 Hz, and the camera’s refresh their image at 50 Hz. The
system finds the closest Velodyne point cloud and GPS posi-
tion relative to the camera’s timestamp. Since the Velodyne
data refresh rate is 5x slower than the camera frame rate,
this causes a timing error of up to 80 milliseconds. This
disparity means that the point cloud may be up to 2.22 me-
ters away from the actual markings at highway speeds (100
km/h). Although, this does not cause problems in practice
because we assume the highways are generally straight.

2The computer’s UTC time is synchronized with Stanford’s NTP server
at time.stanford.edu

2

time.stanford.edu

An additional complication of time synchronization is
the disparity between UTC and GPS time. GPS time does
not take leap seconds into account. Leap seconds occur non-
deterministically up to twice each year. Since the start of
GPS time (Jan 6, 1980) there have been 16 leap seconds3.
This means that UTC time and GPS time are misaligned
by 16 seconds. Since leap seconds cannot be predicted, the
synchronization between the three components in the sys-
tem will need to be updated when a new leap second is an-
nounced. Since this data is being post-processed, a timing
misalignment error should be easily caught.

3.4. Camera Calibration and Velodyne Positioning

The system also needs a correct calibration between the
cameras with the Velodyne. Determining the rotation and
translations between these two components can be done ei-
ther manually or automatically. Manual calibration is done
by projecting the point cloud into the camera’s field of view
and adjusting the transformation parameters until the points
‘line up’ correctly with the scene. Specifically, we need to
know the x, y, and z translation and the yaw, pitch, and roll
rotations of the cameras relative to the Velodyne. The trans-
lation parameters are easily measured using a tape measure
and the rotation parameters are initially guessed. My results
for manual calibration can be seen in Figure4.

Figure 4. Projection of the Velodyne point cloud using manual cal-
ibration

Once I had an initial estimate for the affine parame-
ters, I implemented the iterative algorithm described by
Levinson[2]. This algorithm maximizes the correlation be-
tween depth discontinuities in the point cloud and color dis-
continuities in the camera image. Although this algorithm
was designed to quickly determine if a calibration is correct,
it can also be extended to refine a calibration given an initial
guess.

3The last one was announced in June 30, 2012

Given an image I calculate the ‘edginess’ of each pixel.
The edginess value of each pixel is determined by the max-
imum intensity distance between it and its eight neighbors.
We will call this new edge image E. Next, apply a smooth-
ing function such that the i, jth pixel’s value is defined as:

Di,j = α ∗Ei,j + (1−α) ∗max
x,y

Ex,y ∗ γmax(‖x−i‖,‖y−j‖)

(2)
This smooths the edges of the image so that the objective
function (defined in Equation 4) is rewarded for matching
points close to edges4. Levinson recommends values α = 1

3
and γ = 0.98 for smoothing.

With our new ‘edginess’ image D, we can implement
the second part of the algorithm: finding depth disconti-
nuities in the Velodyne point cloud. Define a new point
cloudX where each point i inX is defined as the maximum
distance between two horizontally adjacent laser points P .
Since the Velodyne is parallel to the ground, we can assume
these points are from the same laser at different times in the
sweep.

Xi = max(‖Pi−1‖ − ‖Pi‖, ‖Pp+1‖ − ‖Pp‖, 0)0.5 (3)

We remove points from P that have distance values inX
less than 30 centimeters to create P ∗. This removing points
with low distances increases the chance we see an edge at
that point in the camera image. We construct objective func-
tion J given our initial guess Cg from manual calibration.
J is maximized by aligning large depth discontinuities in
P ∗ with high intensity values in D. Di,j refers to the pixel
coordinate that point P ∗p projects to.

J =
∑
p

Cg ∗ P ∗p ∗Di,j (4)

We can attempt to find an absolute maximum for J by
performing a grid search across each of the six degrees of
freedom in Cg . Iteratively searching this grid will eventu-
ally find the calibration C that maximizes J . This method
only works if our initial guess is close to the correct cali-
bration – a valid assumption given the manual calibration
qualitatively looks correct.

Using the Velodyne-camera calibration obtained from
Levinson’s method and the GPS-Velodyne calibrations
through manual calibration, I am able to combine all sen-
sor inputs. I can now add color information the 3D depth
maps shown in Figure3. With all of the sensors correctly
calibrated, I can build 3D color maps of a scene. While this
is not useful for labeling the lanes, it is easy to verify all
three calibrations are correct (see Figure 5.

4The inverse distance transform is used in my implementation, but any
smoothing function should work

3

Figure 5. A colored map of the scene. This fuses all three sensor
inputs

3.5. Filtering Out the Lane Markings

While I originally believed that I needed to locate the
ground plane to find lane markings, they can be isolated
from the rest of the point cloud by thresholding. We know
that in all of our test data the lanes are 1.5 meters below the
Velodyne and approximately 1.5 meters on either side. Lane
markings are also highly reflective, so points with intensity
value less than than 60 can be discarded5. With this filter,
I was able to see all reflective markings within about 50
meters of the car. Figure 6 shows my results for a single
point cloud.

Figure 6. Lanes can be easily filtered from the surrounding asphalt

Using the integrated maps created in section 3.2 and the
filters described above, I projected 5 seconds of driving onto
one frame of video. Applying the filters to all frames in the
map without applying another transformation would cause
errors. Specifically, it could remove lane markings from the
map if the road curved or changed elevation. To correctly
apply the filters to a point cloud that occurs at t1, I first need
to transform the cloud to the position at time t0 (where t0
is the point cloud closest to the camera timestamp). Next,
I apply the filter and transform back into t1. Applying the
filter after a transformation to t0 ensures that all clouds are

5For reference, the asphalt has reflectivity between 0 and 5

filtered correctly. Figure 7 shows my results filtering out all
lanes from the highway map. Alignment errors are within
the 2.2 meter range explained in Section 3.3.

Figure 7. Lanes are filtered from the point cloud map of a highway

3.6. Clustering Lane Markings

The results in Figure 7 are promising, but also noisy. To
improve my labels, I used hierarchical clustering to group
lanes together. Hierarchical clustering calculates the dis-
tance from one point to all other points. It groups points
that are within a certain distance threshold of each other.
I weight the distance function to reward points that lie the
axis parallel to the direction of travel. This ensures that
points from different lanes are not grouped together.

After all points are grouped, I take the median of each
group. This places a single point on each lane marking. I
plot the projection of the points using the same calibration
matrix obtained in Section 3.4. The results of clustering for
a single lane is shown in Figure 8.

Figure 8. Points are clustered to give one point per lane marking

4

4. Experimental Results
Using the Velodyne to label lanes works significantly

better than the traditional computer vision approach. Look-
ing for white and yellow clusters on the ground failed with
lanes that were far away or had poor lighting. A significant
advantage of my implementation is that it can label lanes
far into the future with high accuracy. It can also label lanes
that are occluded by cars or changes in elevation. This is
very important when training the lane predictor because it
should be able to predict the lane path even when the mark-
ers are hidden.

Unfortunately, I cannot compare my results to a ground
truth. Building the a dataset to compare to would require
hand labeling the 20 hour corpus. Even with hand labeling,
a human label may be very different than my system’s label
because any label on the lane marker is a correct. Quali-
tatively, the output of my system performs better than the
previous system.

Some example outputs of the lane labeler can be seen at
http://goo.gl/SfF5M1

5. Conclusion
This project combined three data sources to label lanes in

a 20 hour data set. Much of the project involved synchroniz-
ing data across independent clocks and calibrating each data
source with respect to the others. By combining multiple
data sources, I was able to obtain results that far exceeded
the accuracy of the previous color-based approach. Other
projects can also build off by my system. Given the calibra-
tions I determined, cars and road signs can be detected by
simply changing the thresholds and clustering parameters.

References
[1] J. Levinson and S. Thrun. Unsupervised calibration for multi-

beam lasers. In International Symposium on Experimental
Robotics, 2010.

[2] J. Levinson and S. Thrun. Automatic online calibration of
cameras and lasers. In Robotics: Science and Systems, 2013.

[3] Mobileeye. Mobileye lane departure warning (ldw), Jan.
2014.

5

http://goo.gl/SfF5M1

