PSET 3 Part 1 + Neural Nets

Krishnan Srinivasan

CS231A

05/10/2024

Midterm

Will grade midterm ASAP - by mid-end of next week
Will skip lecture recap this week
Next week flipped classroom:

- Prof Bohg will record lecture for you to watch online
- In class, we will review some of the slides with PollEv questions for you to respond to in person
- Please bring questions!
- Krishnan on Mon, Congyue on Wed

PSET 3

Space carving

Representation Learning
Supervised Monocular Depth Estimation

Space Carving

Objective:

- Implement the process of space carving.

Lectures:

- Active Stereo \& Volumetric Stereo

Review: Space Carving

Visual hull:
an upper bound estimate

Review: Space Carving

Silhouette 1
Silhouette

voxels

Space carving - overview

Steps:

- Estimate silhouettes of images (could be based on some heuristics, e.g. color)
- Form the initial voxels as a cuboid
- Iterate over cameras and remove the voxels which project to the dark part of each silhouette

Space carving - (a) (b) (c)

Steps:

- Estimate silhouettes of images (could be based on some heuristics, e.g. color)
- Form the initial voxels as a cuboid
- You may find these functions useful: np.meshgrid, np.repeat, np.tile
- Also boolean indexing, ie keep $=(x>=0) \&(x<=w) \&(y>=0) \&(y<=h)$

O
O
keep $=[i d x$ for idx, val in enumerate(keep) if val]
$x=x[k e e p]$
$y=y[k e e p]$

- Iterate over cameras and remove the voxels which project to the dark part of each silhouette
- Question: What will the voxels look like after the first, second, ... iteration?

Space carving - (a) (b) (c)

Steps:

- Iterate over cameras and remove the voxels which project to the dark part of each silhouette - Question: What will the voxels look like after the first, second, ... iteration?

Space carving - (d)

What if we first find the rough size of the object instead of just looking at camera positions?

Final Output

Space carving - (e)

Steps:

- Estimate silhouettes of images (could be based on some heuristics, e.g. color)
- Problem: The quality of silhouettes is not perfect.
- The silhouette from each camera is not perfect, but the result is ok. Why?
- Experiment: Use only a few of the silhouettes.

PSET 3 - Colab

Need colab for parts 2,3, and 4.

CS231a PSET 3 Problem 2: Representation Learning with Self-Supervised Learning
Overview
In this notebook we will be using the Fashion MNIST dataset, a variation on the classic MNIST dataset, to showcase how self-supervised
representation learning can be utilized for more efficient training in downstream tasks. We will do the following things:

1. Train a classifier from scratch on the Fashion MNIST dataset and observe how fast and well it learns.
2. Train useful representations via predicting image rotations, rather than classifying clothing types.
3. Transfer our rotation pretraining features to solve the classification task with much less data than in step 1 .
First, you should upload the files in 'code/p2' directory onto a location of your choosing in Drive and run the following to have access to them.
You can also skip this step and just upload the files directly using the files tab, though any changes you make will be gone if you close the tab or
the colab runtime ends.
[] from google.colab import drive
My Drive > cs231a > pset3 -
Name $\square \mathrm{p} 3$
p4
p2

Problem 2 - Representation Learning

In this notebook, we will be using the Fashion MNIST dataset to showcase how self-supervised representation learning can be utilized for more efficient training in downstream tasks. We will do the following things:

1. Train a classifier from scratch on the Fashion MNIST dataset and observe how fast and well it learns
2. Train useful representations via predicting image rotations, rather than classifying images
3. Transfer our rotation pretraining features to solve the classification task with much less data than in step 1

Unsupervised Representation Learning by Predicting Image-Rotations (ICLR ‘18)

Problem 2 - Representation Learning

PyTorch Training basics (training.py):

- Use torch.DataLoader and Dataset to load datasets and make batches
- Create layers using torch.nn module
- Use torch.optim to create an SGD Optimizer take gradient steps
- Manipulating torch.Tensor:
- use t.cpu() to move from GPU -> CPU, use t.cuda() for CPU -> GPU

Problem 2 - Representation Learning

MNISTDatasetWrapper(Dataset)

- __init__: load pct\% of images from processed .pt file
- __getitem__: randomly rotate an image from self.imgs. Hint: use PIL.Image.rotate to rotate image, and then return to torch. Tensor type
- Hint: Use torch.tensor(rotation_idx).Iong() to generate rotation labels
nn.Sequential(...)
- Creates a stack of layers that pass input data through a model
- nn.Linear(...) layers form weights and biases for a single layer

Problem 2 - Representation Learning

Training example (from pytorch-examples repo)

- opt.zero_grad to zero gradients before update
- loss.backward to backpropagate gradients
- opt.step to update model params

```
# model = torch.nn.Sequential(
model = torch.nn.Sequential(
    torch.nn.Linear(D,
    torch.nn.Linear(H, D_out),
loss_fn = torch.nn.MSELoss(reduction='sum')
# Use the optim package to define an Optimizer that will update the weights of
# the model for us. Here we will use Adam; the optim package contains many otner
# optimization algorithms. The first argument to the Adam constructor tells the
# optimizer which Tensors it should update.
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for t in range(500):
    or t in range(500)
    Forward pass: compute predicted y by passing }x\mathrm{ to the model.
    y_pred = model(x)
    # Compute and print loss.
    print(t, loss.item())
    # Before the backward pass, use the optimizer object to zero all of the
    # gradients for the Tensors it will update (which are the learnable weights
    # of the model)
    optimizer.zero_grad()
    # Backward pass:
    loss.backward()
    # Calling the step function on an Optimizer makes an update to its parameters
    optimizer.step()
```


Intro to Neural Networks

- Background and Applications
- Fully-connected Neural Networks (MLP)
- Convolutional Neural Networks (CNN)
- Backpropagation Algorithm
- PyTorch Example

Background

History

- 1957: Frank Rosenblatt designs the Mark I Perceptron, an early learning-based computer

Tuning hyperparameters used to take a lot longer in Rosenblatt's day

Background

History

- 1957: Frank Rosenblatt designs the Mark I Perceptron, an early learning-based computer
- 1969: Multi-layer perceptron (early fully-connected neural networks) by Minksy and Papert

Tuning hyperparameters used to take a lot longer in Rosenblatt's day

Background

History

- 1957: Frank Rosenblatt designs the Mark I Perceptron, an early learning-based computer
- 1969: Multi-layer perceptron (early fully-connected neural networks) by Minksy and Papert
- 1986: Rumelhart, Hinton, and Williams (and others) develop the backpropagation algorithm (BP)

Tuning hyperparameters used to take a lot longer in Rosenblatt's day

Background

History

- 1957: Frank Rosenblatt designs the Mark I Perceptron, an early learning-based computer
- 1969: Multi-layer perceptron (early fully-connected neural networks) by Minksy and Papert
- 1986: Rumelhart, Hinton, and Williams (and others) develop the backpropagation algorithm (BP)
- 1989: LeCun et al. develop BP for Convolutional Neural Networks (CNNs), and introduce MNIST dataset

Tuning hyperparameters used to take a lot longer in Rosenblatt's day

Background

History

- 1957: Frank Rosenblatt designs the Mark I Perceptron, an early learning-based computer
- 1969: Multi-layer perceptron (early fully-connected neural networks) by Minksy and Papert
- 1986: Rumelhart, Hinton, and Williams (and others) develop the backpropagation algorithm (BP)
- 1989: LeCun et al. develop BP for Convolutional Neural Networks (CNNs), and introduce MNIST dataset
- 2012: AlexNet uses GPUs to train CNNs fast enough

Tuning hyperparameters used to take a lot longer in Rosenblatt's day to be practical

A bit of history:

ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission
"AlexNet"

A Brief History of Neural Nets and Deep Learning

Applications: Convolutional Networks

Detection

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission
[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Applications: Convolutional Networks

Detection

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.
[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Segmentation

Figures copyright Clement Farabet, 2012. Reproduced with permission.
[Farabet et al., 2012]

Classification

Retrieval

\square mite mite
C

\qquad

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Two-Stream Convolutional Networks for Action Recognition in Videos

Original image RGB channels
[Taigman et al. 2014]

[Simonyan et al. 2014]
Figures copyright Simonyan et al., 2014. Reproduced with permission.

\because *

conv2

conv3
conv4 ... mixed3/conv ... mixed10/conv ... Softmax
\bullet •

$\bullet \cdot$

Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma McIntosh, used with permission. Figure and architecture not from Taigman et al. 2014.

Two-Stream Convolutional Networks for Action Recognition in Videos

Dense Captioning [Johnson et al. 2016]

Without context, these weights aren't very interesting.

FIGURE 3: Contextualizing weights.

With context, they show us how a head detector gets attached to a body.

Background

Signal Relay

Starting from V1 primary visual cortex, visual signal is transmitted upwards, forming a more complex and abstract representation at every level

Fully-Connected Neural Networks

Fully-Connected Neural Networks
 Components

Image
source

Fully-Connected Neural Networks
 Components

- A single input layer, h_{0} $\in \mathbb{R}^{n}$

Image
source

Fully-Connected Neural Networks
 Components

- A single input layer, $h_{0} \quad \in \mathbb{R}^{n}$
- k - hidden layers, $a_{i} \in$ R $^{d_{i}}$
- Weight matrices, $W_{i} \quad \in$ $\operatorname{Re}^{d_{i-1} \times d_{i}}$
- Bias vectors, $b_{i} \in$ 屈 $^{d_{i}}$

Image
source

Fully－Connected Neural Networks
 Components

－A single input layer，$h_{0} \in \mathbb{R}^{n}$
－k－hidden layers，$a_{i} \in$ 圆 $^{d_{i}}$
－Weight matrices，$W_{i} \in$呙 $d_{i-1} \times d_{i}$
－Bias vectors，$b_{i} \in$ 圆 $^{d_{i}}$
－Output layer，$\hat{y} \in$ R m

Image
source

Fully－Connected Neural Networks
 Components

－A single input layer，$h_{0} \quad \in \mathbb{R}^{n}$

- k－hidden layers，$a_{i} \in$ 眖 $^{d_{i}}$
- Weight matrices，$W_{i} \in$ 屑 $^{d_{i-1} \times d_{i}}$
- Bias vectors，$b_{i} \in$ 跴 $_{d_{i}}$
- Output layer，$\hat{y} \in$ 跑 m
－For each layer，$a_{i}=f\left(z_{i}\right)=f\left(W_{i} h_{i}+b_{i}\right)$ ，where f is an activation function

Fully－Connected Neural Networks Components

－A single input layer，$h_{0} \quad \in \mathbb{R}^{n}$
－k－hidden layers，$a_{i} \in$ 跔 $^{d_{i}}$
－Weight matrices，$W_{i} \in$ $\mathrm{R}_{\mathrm{d}} d_{i-1} \times d_{i}$

- Bias vectors，$b_{i} \in$ 凩 $^{d_{i}}$
- Output layer，$\hat{y} \in$ 踇 m
－For each layer，$a_{i}=f\left(z_{i}\right)=f\left(W_{i} h_{i}+b_{i}\right)$ ，where f is an activation function
－Series of stacked layers compose multiple function together（e．g．$(f \circ g)(x))$

Image
source

Fully-Connected Neural Networks

Cost Function

Fully-Connected Neural Networks Cost Function

- To train parameters, compute a cost associated with every predicted/labeled output pair, y, y.

Fully-Connected Neural Networks Cost Function

- To train parameters, compute a cost associated with every predicted/labeled output pair, y, y.
- Requirements: can be averaged over a batch, can be computed with outputs from network

Fully-Connected Neural Networks
 Cost Function

- To train parameters, compute a cost associated with every predicted/labeled output pair, y, y.
- Requirements: can be averaged over a batch, can be computed with outputs from network
- Common loss functions:
- Least squares
(quadratic):

$$
\frac{1}{2 m} \sum_{i=1}^{m} / / / y^{2} y_{i} \hat{y}_{i}
$$

- Binary Cross-Entropy: $y \log (y)+(1-y) \log (1-y)$
- Cross entropy (classification, y_{j} is one-hot encoding at j): $\sum_{i=1}^{m} y_{i} \log \left(\hat{y_{i}}\right)$

Fully-Connected Neural Network
 Example
 $$
\begin{aligned} & a_{1}=f\left(W_{11} x_{1}+W_{12} x_{2}+W_{13} x_{3}+b_{1}\right) \\ & a_{2}=f\left(W_{21} x_{1}+W_{22} x_{2}+W_{23} x_{3}+b_{2}\right) \\ & a_{3}=f\left(W_{31} x_{1}+W_{32} x_{2}+W_{33} x_{3}+\right. \\ & h) \end{aligned}
$$

Layer L_{1}

Sigmoid (logit) transform. $\sigma(z)=\frac{1}{1+e^{-z}}$
Hyperbolic tangent (tanh). $\tanh (z)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
Rectified Linear Unit $(\operatorname{ReLU}) . \operatorname{ReLU}(z)=\max (0, z)$

Convolutional Neural Networks

Introduction

- Analogues:
- For computer vision applications, convolutional networks are used to learn feature detectors from images
- Advantages:
- Images are high-dimensional data, fully connected layers would require too many parameters to tune
- Convolution operations preserve spatial structure of data
- Convolution operation can be computed efficiently on GPUs (using CUDA)
- Inputs/activations are "what" the network "sees"
- Weights are "how" the network computes one layer from the previous one (feature-detection)
- As architectures become more complex, interpretability of these learned features becomes more difficult

Convolutional Neural Networks

Components

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape $\left[h \times w \times n_{\text {channels }}\right]$

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape
$[h \times w \times n$ channels]
- Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output chann 1 ls

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape
$[h \times w \times n$ channels ${ }^{\text {] }}$
- Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output channd1s
- "Convolve" operation consists of 4 hyperparameters:

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape
$\left[h \times w \times n_{\text {channels }}\right]$
- Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output channd1s
- "Convolve" operation consists of 4 hyperparameters:
- Number of filters, or depth (each channel also called an "activation map")

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape
$\left[h \times w \times n_{\text {channels }}\right]$
- Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output channd1s
- "Convolve" operation consists of 4 hyperparameters:
- Number of filters, or depth (each channel also called an "activation map")

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape
$\left[h \times w \times n_{\text {channels }}\right]$
- Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output
channels]
- "Convolve" operation consists of 4 hyperparameters:
- Number of filters, or depth called an "activation map")
- Spatial extent, or receptive field

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape
$\left[h \times w \times n_{\text {channels }}\right]$
- Between two convolutional layers, the weights are of the
shape [relative x-position, relative y-position, input channels,
output channeld
- "Convolve" operation consists of 4 hyperparameters:
- Number of filters, or depth (each channel also called an "activation map")
- Spatial extent, or receptive field
- The stride

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape
$[h \times w \times n$

- Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output
channels]
- "Convolve" operation consists of 4 hyperparameters:
- Number of filters, or depth (each channel also called an "activation map")
- Spatial extent, or receptive field
- The stride
- Amount of zero-padding

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape
$\left[h \times w \times n_{\text {channels }}\right]$
- Between two convolutional layers, the weights are of the shape [relative x-position, relative y-position, input channels, output channeld
- "Convolve" operation consists of 4 hyperparameters:
- Number of filters, or depth
(each channel
also called an "activation map")
- Spatial extent, or receptive field
- The stride

- Amount of zero-padding

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape

$$
\left[h \times w \times n_{\text {channels }}\right]
$$

- Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output channd1s
- "Convolve" operation consists of 4 hyperparameters:
- Number of filters, or depth
(each channel also called
an "activation map")
- Spatial extent, or receptive field
- The stride
- Amount of zero-padding

Input Volume (+pad 1) (7x7x3)							$\text { Filter W0 }(3 \times 3 \times 3)$		Filter W1 ($3 \times 3 \times 3$)		
x[:, : ,0]									w1	:,	:,0]
0	0	0	0	0	0	0	1	-1	0	0	1
0	1	2	0	0	1	0	-1	0		1	0
0	2	2	0	1	0	0	-1	-1 0	0	0	0
0	2	2	1	2	1	0	w0	: , : , 1]		:,	:,1]
0	0	1	1	0	2	0		0 1	1	0	0
0	2	1	0	2		0	-1	0	1	-1	1
0	0		0	0		0	-1	-1 ${ }^{-1}$	-1	0	0
		1]		1				: $\cdot 1.21$: ,	:,2]
0	0	0	0	0		0		${ }^{-1}$	-1	1	0
0	0	2	0	0	1	-		80	0	-1	1
0	1	1		2	2			-1 -1	1	0	-1
0	0	1	1		2	0	Bias	$\text { b0 } 1 \mathrm{x} 1 \times 1)$		b1	(1x1x1)
0	1	2	0	2	0	0		:, : 0]		:,	:,0]
0	0	2		1		0			0		
0	9)	0	0			0					
		,2]									
0	0	0		0		,					
0	2	,	1	0	0	0					
(0)	2	1	6	0	1	0					
0	0	2	2	2	1	0					
0	1	2	1	0	2	0					
0	2	1	1	1	1	0					
0	0	0	0	0	0	0					

-With this, the shape of layer convolved from layer - 1 is:

- [$(W-F+2 P) / S+1,(H-F+2 P) / S+1, K]$

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape $\left[h \times w \times n_{\text {channels }}\right]$
- Between two convolutional layers, the weights are of the shape [relative x-position, relative y-position, input channels, output channels]
- "Convolve" operation consists of 4 hyperparameters:
- Number of filters, or depth (each channel also called an "activation map")
- Spatial extent, or receptive field
- The stride
- Amount of zero-padding
- With this, the shape of layer convolved from layer - 1 is:
- $[(W-F+2 P) / S+1,(H-F+2 P) / S+1, K]$

Convolutional Neural Networks

Components

- Each convolutional "layer" is represented by a 3D tensor of shape $\left[h \times w \times n_{\text {channels }}\right]$
- Between two convolutional layers, the weights are of the shape [relative x-position, relative y-position, input channels, output channels]
- "Convolve" operation consists of 4 hyperparameters:
- Number of filters, or depth (each channel also called an "activation map")
- Spatial extent, or receptive field
- The stride
- Amount of zero-padding
- With this, the shape of layer convolved from layer - 1 is:
- $[(W-F+2 P) / S+1,(H-F+2 P) / S+1, K]$

Output Volume (3x3x2) w1 [: , : : 0] $\begin{array}{lll}0 & 0 & 1\end{array}$ \begin{tabular}{l|l|l}
\hline 1 \& 1 \& 0

1 \& 1 \& 0

\hline \& 0 \& 0

 w1[:,:,1] $\begin{array}{lll}1 & 0 & 0\end{array}$

\hline 1 \& -1 \& 1

\hline-1 \& 0

\hline
\end{tabular} w1 [: $: ~: ~, ~ 2] ~$

-1 1 | -1 | 1 | 0 |
| :---: | :---: | :---: |
| 0 | -1 | 1 | $\begin{array}{llll}0 & -1 & 1\end{array}$ $\begin{array}{llll}1 & 0 & -1\end{array}$

Bias b1 ($1 \times 1 \times 1$) b1[:,: : 0] 0

$\begin{array}{lll}-6 & -7 & -5 \\ -9 & -6 & -9\end{array}$
$\begin{array}{lll}-9 & -6 & -9 \\ 3 & -5 & 8\end{array}$
$\begin{array}{llll}3 & -5 & -8\end{array}$
$\begin{array}{ccc}\mathrm{o}[:,:, 1] \\ 2 & 3 & -2\end{array}$
$\begin{array}{llll}7 & 4 & 1\end{array}$

5	4	1
5	5	7

Convolutional Neural Networks

Convolutional Neural Networks

Pooling and FC layers

- Max and Average (L2-norm) pooling:
- Downsampling operation to reduce width x height (but not depth) of a layer
- Fully-connected (FC) layers:

- Flattens entire input volume to a vector, and treats like a normal FC network layer

Fin

Questions?

