
PSET 3 Part 1 + Neural Nets

Krishnan Srinivasan

CS231A

05/10/2024

Will grade midterm ASAP - by mid-end of next week

Will skip lecture recap this week

Next week flipped classroom:

- Prof Bohg will record lecture for you to watch online
- In class, we will review some of the slides with PollEv questions for you to

respond to in person
- Please bring questions!
- Krishnan on Mon, Congyue on Wed

Midterm

PSET 3

Space carving

Representation Learning

Supervised Monocular Depth Estimation

Space Carving
Objective:

● Implement the process of space carving.

Lectures:

● Active Stereo & Volumetric Stereo

Review: Space Carving

Review: Space Carving

object

Silhouette 1

Review: Space Carving

object

Silhouette 2

Silhouette 1

Goal of Space Carving

object?

Silhouette 2

Silhouette 1

Review: Space Carving

voxels

Silhouette 2

Silhouette 1

Review: Space Carving

voxels

Silhouette 2

Silhouette 1

Review: Space Carving

voxels

Silhouette 2

Silhouette 1

Review: Space Carving

voxels

Silhouette 1

Review: Space Carving

Image 1

voxels

Review: Space Carving

voxels

Silhouette 2

Silhouette 1

Review: Space Carving

voxels

object

Silhouette 2

Silhouette 1

Space carving - overview
Steps:

● Estimate silhouettes of images (could be based on some heuristics, e.g. color)
● Form the initial voxels as a cuboid
● Iterate over cameras and remove the voxels which project to the dark part of each silhouette

Space carving - (a) (b) (c)
Steps:

● Estimate silhouettes of images (could be based on some heuristics, e.g. color)
● Form the initial voxels as a cuboid

○ You may find these functions useful: np.meshgrid, np.repeat, np.tile
○ Also boolean indexing, ie keep = (x>=0) & (x<=w) & (y>=0) & (y<=h)
○ keep = [idx for idx, val in enumerate(keep) if val]
○ x = x[keep]
○ y = y[keep]

● Iterate over cameras and remove the voxels which project to the dark part of each silhouette
○ Question: What will the voxels look like after the first, second, … iteration?

Space carving - (a) (b) (c)
Steps:

● Iterate over cameras and remove the voxels which project to the dark part of each silhouette
○ Question: What will the voxels look like after the first, second, … iteration?

Space carving - (d)
What if we first find the rough size of the object instead of just looking at camera positions?

Final Output

Coarse
Carving

Space carving - (e)
Steps:

● Estimate silhouettes of images (could be based on some heuristics, e.g. color)
○ Problem: The quality of silhouettes is not perfect.
○ The silhouette from each camera is not perfect, but the result is ok. Why?
○ Experiment: Use only a few of the silhouettes.

PSET 3 - Colab
Need colab for parts 2,3, and 4.

In this notebook, we will be using the Fashion MNIST
dataset to showcase how self-supervised representation
learning can be utilized for more efficient training in
downstream tasks. We will do the following things:

1. Train a classifier from scratch on the Fashion MNIST
dataset and observe how fast and well it learns

2. Train useful representations via predicting image
rotations, rather than classifying images

3. Transfer our rotation pretraining features to solve the
classification task with much less data than in step 1

Problem 2 - Representation Learning

https://www.kaggle.com/zalando-research/fashionmnist
https://www.kaggle.com/zalando-research/fashionmnist

Unsupervised Representation Learning by Predicting
Image-Rotations (ICLR ‘18)

https://arxiv.org/abs/1803.07728
https://arxiv.org/abs/1803.07728

PyTorch Training basics (training.py):

● Use torch.DataLoader and Dataset to load datasets and make batches
● Create layers using torch.nn module
● Use torch.optim to create an SGD Optimizer take gradient steps
● Manipulating torch.Tensor:

○ use t.cpu() to move from GPU -> CPU, use t.cuda() for CPU -> GPU

Problem 2 - Representation Learning

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/tensors.html

MNISTDatasetWrapper(Dataset)

● __init__: load pct% of images from processed .pt file
● __getitem__: randomly rotate an image from self.imgs. Hint: use

PIL.Image.rotate to rotate image, and then return to torch.Tensor type
● Hint: Use torch.tensor(rotation_idx).long() to generate rotation labels

nn.Sequential(...)

● Creates a stack of layers that pass input data through a model
● nn.Linear(...) layers form weights and biases for a single layer

Problem 2 - Representation Learning

Problem 2 - Representation Learning

Training example (from pytorch-examples repo)

● opt.zero_grad to zero gradients before
update

● loss.backward to backpropagate gradients
● opt.step to update model params

https://github.com/jcjohnson/pytorch-examples

Intro to Neural Networks

• Background and Applications

• Fully-connected Neural Networks (MLP)

• Convolutional Neural Networks (CNN)

• Backpropagation Algorithm

• PyTorch Example

Background
History

• 1957: Frank Rosenblatt designs the Mark I Perceptron,
an early learning-based computer

Tuning hyperparameters used to take
a lot longer in Rosenblatt’s day

Background
History

• 1957: Frank Rosenblatt designs the Mark I Perceptron,
an early learning-based computer

• 1969: Multi-layer perceptron (early fully-connected
neural networks) by Minksy and Papert

Tuning hyperparameters used to take
a lot longer in Rosenblatt’s day

Background
History

• 1957: Frank Rosenblatt designs the Mark I Perceptron,
an early learning-based computer

• 1969: Multi-layer perceptron (early fully-connected
neural networks) by Minksy and Papert

• 1986: Rumelhart, Hinton, and Williams (and others)
develop the backpropagation algorithm (BP)

Tuning hyperparameters used to take
a lot longer in Rosenblatt’s day

Background
History

• 1957: Frank Rosenblatt designs the Mark I Perceptron,
an early learning-based computer

• 1969: Multi-layer perceptron (early fully-connected
neural networks) by Minksy and Papert

• 1986: Rumelhart, Hinton, and Williams (and others)
develop the backpropagation algorithm (BP)

• 1989: LeCun et al. develop BP for Convolutional Neural
Networks (CNNs), and introduce MNIST dataset

Tuning hyperparameters used to take
a lot longer in Rosenblatt’s day

Background
History

• 1957: Frank Rosenblatt designs the Mark I Perceptron,
an early learning-based computer

• 1969: Multi-layer perceptron (early fully-connected
neural networks) by Minksy and Papert

• 1986: Rumelhart, Hinton, and Williams (and others)
develop the backpropagation algorithm (BP)

• 1989: LeCun et al. develop BP for Convolutional Neural
Networks (CNNs), and introduce MNIST dataset

• 2012: AlexNet uses GPUs to train CNNs fast enough
to be practical

Tuning hyperparameters used to take
a lot longer in Rosenblatt’s day

Following slides are borrowed from CS231N Lecture 5

A Brief History of Neural Nets and Deep Learning

https://www.skynettoday.com/overviews/neural-net-history

Applications: Convolutional Networks

Applications: Convolutional Networks

DeepFace (Face
Verification)

Two-Stream Convolutional Networks for Action Recognition in
Videos

DeepFace (Face
Verification)

Two-Stream Convolutional Networks for Action Recognition in
Videos

Dense Captioning
[Johnson et al. 2016]

Dense Captioning
[Johnson et al. 2016]

Visualizing Circuits
[Voss et al. 2021]

Background
Signal Relay

Starting from V1 primary visual cortex, visual signal is transmitted upwards,

forming a more complex and abstract representation at every level
Foundations of Vision, Brian A. Wandell (1995)

Fully-Connected Neural Networks

Fully-Connected Neural Networks
Components

Image
source

Fully-Connected Neural Networks
Components

• A single input layer, h
0

∈ ℝn

Image
source

Fully-Connected Neural Networks
Components

• A single input layer, h
0

∈ ℝn

• k- hidden layers, ai ∈ ℝdi

• Weight matrices, Wi ∈
ℝdi−1×di

• Bias vectors, bi ∈ ℝdi

Image
source

Fully-Connected Neural Networks
Components

• A single input layer, h
0

∈ ℝn

• k- hidden layers, ai ∈ ℝdi

• Weight matrices, Wi ∈
ℝdi−1×di

• Bias vectors, bi ∈ ℝdi

• Output layer, y ̂ ∈ ℝm

Image
source

Fully-Connected Neural Networks
Components

• A single input layer, h
0

∈ ℝn

• k- hidden layers, ai ∈ ℝdi

• Weight matrices, Wi ∈ ℝdi−1×di

• Bias vectors, bi ∈ ℝdi

• Output layer, y ̂ ∈ ℝm

• For each layer, ai = f(zi) = f(Wihi + bi), where
f is an activation function

Image
source

Fully-Connected Neural Networks
Components

• A single input layer, h
0

∈ ℝn

• k- hidden layers, ai ∈ ℝdi

• Weight matrices, Wi ∈
ℝdi−1×di

• Bias vectors, bi ∈ ℝdi

• Output layer, y ̂ ∈ ℝm

• For each layer, ai = f(zi) = f(Wihi + bi), where
f isan activation function

• Series of stacked layers compose multiple function
together (e.g. (f ∘ g)(x))

Image
source

Fully-Connected Neural Networks
Cost Function

Fully-Connected Neural Networks
Cost Function

• To train parameters, compute a cost associated with every predicted/labeled
output pair, y, y.

Fully-Connected Neural Networks
Cost Function

• To train parameters, compute a cost associated with every predicted/labeled
output pair, y, y.

• Requirements: can be averaged over a batch, can be computed with outputs
from network

Fully-Connected Neural Networks
Cost Function

• To train parameters, compute a cost associated with every predicted/labeled
output pair, y, y.

• Requirements: can be averaged over a batch, can be computed with outputs
from network

• Common loss functions:• Least squares
(quadratic):• Binary Cross-Entropy: y log(y) ̂ + (1 − y)log(1 − y)

• Cross entropy (classification, yj is one-hot encoding at j):

1

2m
∑

i=1

m
∥yi − yi ̂
∥2

∑
i=1

m
yi log(yi ̂)

Fully-Connected Neural
Network
Example

a
3

= f(W
31

x
1

+ W
32

x
2

+ W
33

x
3

+
b

3
)

Convolutional Neural Networks
Introduction

• For computer vision applications,
convolutional networks are used to learn
feature detectors from images

• Advantages:

• Images are high-dimensional data, fully
connected layers would require too many
parameters to tune

• Convolution operations preserve spatial
structure of data

• Convolution operation can be computed
efficiently on GPUs (using CUDA)

• Analogues:

• Inputs/activations are “what” the
network “sees”

• Weights are “how” the network
computes one layer from the
previous one (feature-detection)

• As architectures become more
complex, interpretability of these
learned features becomes more
difficult

Convolutional Neural Networks
Components

Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of shape
[h × w × n

channels
]

Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of shape
[h × w × n

channels
]

• Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output channels]

Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of shape
[h × w × n

channels
]

• Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output channels]

• “Convolve” operation consists of 4 hyperparameters:

Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of shape
[h × w × n

channels
]

• Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output channels]

• “Convolve” operation consists of 4 hyperparameters:

• Number of filters, or depth (each channel also called
an “activation map”)

Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of shape
[h × w × n

channels
]

• Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output channels]

• “Convolve” operation consists of 4 hyperparameters:

• Number of filters, or depth (each channel also called
an “activation map”)

Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of
shape
[h × w × n

channels
]

• Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output
channels]

• “Convolve” operation consists of 4 hyperparameters:

• Number of filters, or depth (each channel also
called an “activation map”)

• Spatial extent, or receptive field

Convolutional
Neural Networks
Components
• Each convolutional “layer” is represented by a 3D tensor of

shape
[h × w × n

channels
]

• Between two convolutional layers, the weights are of the
shape [relative x-position, relative y-position, input channels,
output channels]

• “Convolve” operation consists of 4 hyperparameters:

• Number of filters, or depth (each channel
also called an “activation map”)

• Spatial extent, or receptive field

• The stride

Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of shape
[h × w × n

channels
]

• Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output
channels]

• “Convolve” operation consists of 4 hyperparameters:

• Number of filters, or depth (each channel also called
an “activation map”)

• Spatial extent, or receptive field

• The stride

• Amount of zero-padding

Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of
shape
[h × w × n

channels
]

• Between two convolutional layers, the weights are of the
shape [relative x-position, relative y-position, input channels,
output channels]

• “Convolve” operation consists of 4 hyperparameters:

• Number of filters, or depth (each channel
also called an “activation map”)

• Spatial extent, or receptive field

• The stride

• Amount of zero-padding

Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of shape
[h × w × n

channels
]

• Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output channels]

• “Convolve” operation consists of 4 hyperparameters:

• Number of filters, or depth (each channel also called
an “activation map”)

• Spatial extent, or receptive field

• The stride

• Amount of zero-padding

• With this, the shape of layer convolved from layer − 1 is:

• [(W − F + 2P)/S + 1, (H − F + 2P)/S + 1, K]

Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of shape
[h × w × n

channels
]

• Between two convolutional layers, the weights are of the shape [relative
x-position, relative y-position, input channels, output channels]

• “Convolve” operation consists of 4 hyperparameters:

• Number of filters, or depth (each channel also called an
“activation map”)

• Spatial extent, or receptive field

• The stride

• Amount of zero-padding

• With this, the shape of layer convolved from layer − 1 is:

• [(W − F + 2P)/S + 1, (H − F + 2P)/S + 1, K]

Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of shape
[h × w × n

channels
]

• Between two convolutional layers, the weights are of the shape [relative
x-position, relative y-position, input channels, output channels]

• “Convolve” operation consists of 4 hyperparameters:

• Number of filters, or depth (each channel also called an
“activation map”)

• Spatial extent, or receptive field

• The stride

• Amount of zero-padding

• With this, the shape of layer convolved from layer − 1 is:

• [(W − F + 2P)/S + 1, (H − F + 2P)/S + 1, K]

Convolutional Neural Networks

Slide borrowed from CS231N Lecture 5

Convolutional Neural Networks
Pooling and FC layers

• Max and Average (L2-norm) pooling:

• Downsampling operation to reduce width x
height (but not depth) of a layer

• Fully-connected (FC) layers:

• Flattens entire input volume to a vector, and
treats like a normal FC network layer

Fin
Questions?

