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Silvio Savarese & Jeanette Bohg 29-Apr-24

•Problem Formulation
•Least Squares Methods
•RANSAC
•Hough Transforms
•Multi-model fitting
•Fitting helps matching

Reading:
[HZ] Chapter 4 “Estimation - 2D projective transformation” 
[HZ] Chapter 11 “Computation of the fundamental matrix F”
[FP] Chapter 10 “Grouping and Model Fitting”

Lecture 9
Fitting and Matching



Fitting
Goals:
• Choose a parametric model to fit a 

certain quantity from data
• Estimate model parameters

- Lines 
- Curves
- Homographic transformations
- Fundamental matrices
- Shape models



Example: fitting lines
(for computing vanishing points)



H

Example: Estimating an homographic 
transformation



Example: Estimating F



A

Example: fitting a 2D shape template



Example: fitting a 3D object 
model



Fitting, matching and recognition 
are interconnected problems



Fitting

Critical issues:
- noisy data
- outliers
- missing data
- Intra-class variation



Critical issues: noisy data



What’s H?

Critical issues: outliers



What’s H?

Critical issues: outliers





Critical issues: missing data 
(occlusions)



Critical issues: noisy data 
(intra-class variability)

A



Fitting
Goal: Choose a parametric model 

to 
fit a certain quantity from data

Techniques: 
•Least square methods
•RANSAC
•Hough transform
•EM (Expectation Maximization) [not covered]



Least squares methods
- fitting a line -

• Data: (x1, y1), …, (xn, yn)

• Model of the line: 
yi – m xi – b = 0

• Parameters: m, b

• Find (m, b) to minimize 
fitting error (residual): 

∑=
−−=

n

i ii bxmyE
1

2)(

(xi, yi)

y=mx+b

[Eq. 2]
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Normal equation
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Least squares methods
- fitting a line -

Find h = [m, b]T that minimizes E 

[Eq. 2]

[Eq. 6]

[Eq. 3]

[Eq. 4]

[Eq. 5]

[Eq. 7]



Least squares methods
- fitting a line -
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• Fails completely for vertical lines

Issues?

[Eq. 6]



• Distance between point 
(xi , yi ,1) and line (a, b, d)

• Find (a, b, d) to minimize the 
sum of squared 
perpendicular distances

( xi , yi , 1 )

data model parameters

Least squares methods
- fitting a line -

[Eq. 8]

[Eq. 9]

ax + by = d



1||h||tosubject||hA||Minimize =

TUDVA =

V  ofcolumn last h =

A h = 0

Least squares methods
- fitting a line -

A is rank deficient

See [HZ], sec. A5.3 - page 593



H

Least squares methods
- fitting an homography -

x

y

x’

y’

data model parameters

[Eq. 10]

See HZ 
- Sec 4.1 for details (DLT algorithm)
- Sec 4.1.2 (or APPENDIX)



Least squares: Robustness to noise



Least squares: Robustness to noise

outlier!



H

Critical issues: outliers

CONCLUSION: Least square is not robust w.r.t. outliers



Fitting
Goal: Choose a parametric model 

to 
fit a certain quantity from data

Techniques: 
•Least square methods
•RANSAC
•Hough transform



Basic philosophy
(voting scheme)

• Data elements are used to vote for one (or 
multiple) models

• Robust to outliers and missing data

• Assumption 1: Noisy data points will not vote 
consistently for any single model   (“few” outliers)

• Assumption 2: There are enough data points to agree 
on a good model  (“few” missing data)



Example: 
Line fitting

• Enough “good” data points supporting the line model in presence of 
noise

• “Few” outliers compared to the “good” data points – these few 
outliers won’t “consistently” vote for a line model 
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Model parameters a,b,d

RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

[Eq. 12]



RANSAC

Algorithm:
1. Select random sample of minimum required size to fit model 
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set
Repeat 1-3 until model with the most inliers over all samples is found 

P = Sample set = set of points in 2D



RANSAC

Algorithm:
1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set
Repeat 1-3 until model with the most inliers over all samples is found 

P = Sample set = set of points in 2D



RANSAC

Algorithm:
1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set
Repeat 1-3 until model with the most inliers over all samples is found 

P = Sample set = set of points in 2D



δ

RANSAC

Algorithm:
1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set
Repeat 1-3 until model with the most inliers over all samples is found 

P = Sample set = set of points in 2D



δ

RANSAC

Algorithm:
1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set
Repeat 1-3 until model with the most inliers over all samples is found 



How many samples?

• Computationally unnecessary (and infeasible) to explore the 
entire sample space

• N samples are sufficient

• N = number of samples required to ensure, with a probability 
p, that at least one random sample produces an inlier set that 
is free from “real” outliers

• Function of s and e:
– e = outlier ratio
– s = minimum number of data points needed to fit the model

• Usually, p=0.99 



δ

• Here a random sample is given by two green points
• The estimated inlier set is given by the green+blue points
• How many “real” outliers we have here? 

Example

2

e = outlier ratio is 6/20 = 30%
s = 2



• Random sample is given by two green points
• The estimated inlier set is given by the green+blue points
• How many “real” outliers we have here? 

Example

0

δ

e = outlier ratio is 6/20 = 30%
s = 2



Example

δ

N is the number of times we need to sample my data (and thus repeat the 
steps 1-3 in the previous slides) before I find the configuration above with 
probability p. Again this is function of e and s as well.

e = outlier ratio is 6/20 = 30%
s = 2



How many samples?
• Number N of samples required to ensure, with a probability p, 

that at least one random sample produces an inlier set that is 
free from “real” outliers for a given s and e.

• E.g., p=0.99 

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

e = outlier ratio
s = minimum number needed to fit the model

( ) ( )( )se11log/p1logN −−−=

Note: this table assumes “negligible” measurement noise

[Eq. 13]



Estimating H 
by RANSAC

Algorithm:
1. Select a random sample of minimum required size [?]
2. Compute a putative model from these
3. Compute the set of inliers to this model from whole sample 

space 
Repeat 1-3 until model with the most inliers over all samples is found 

P = Sample set = set of matches between 2 images

•H → 8 DOF
•Need 4 correspondences

Outlier 
match



Estimating F 
by RANSAC

Algorithm:
1. Select a random sample of minimum required size [?]
2. Compute a putative model from these
3. Compute the set of inliers to this model from whole sample 

space 
Repeat 1-3 until model with the most inliers over all samples is found 

P = Sample set = set of matches between 2 images

•F → 7 DOF
•Need 8 correspondences

Outlier matches



• Simple and easily implementable
• Successful in different contexts

RANSAC - conclusions

Good:

Bad:
• Many parameters to tune
• Trade-off accuracy-vs-time
• Cannot be used if ratio inliers/outliers is too small



Fitting
Goal: Choose a parametric model 

to 
fit a certain quantity from data

Techniques: 
•Least square methods
•RANSAC
•Hough transform



Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. 
High Energy Accelerators and Instrumentation, 1959 



x

y

Hough transform

Given a set of points, find the line parameterized by 
m,n that explains the data points best: that is, m = m’ 
and n = n’

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. 
High Energy Accelerators and Instrumentation, 1959 

y = m’ x + n’
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Hough transform

Given a set of points, find the line parameterized by m,n
that explains the data points best: that is, m = m’ and n 
= n’

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. 
High Energy Accelerators and Instrumentation, 1959 

Hough space defined by 
the parameters of the 
model we want to fit (i.e., 
m  n) 

y1 = m x1 + n

(x1, y1)

(x2, y2)

y2 = m x2 + n

m’

n’

y = m’ x + n’

Original space where the 
data points are



Hough transform

Any Issue?  

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. 
High Energy Accelerators and Instrumentation, 1959 

The parameter space [m,n] is unbounded…



x

y

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. 
High Energy Accelerators and Instrumentation, 1959 

Hough space

ρθθ =+   siny  cosx

 θ
ρ

Use a polar representation for the parameter 
space 

 θ

ρ

[Eq. 13]

Any Issue?  

Original space

The parameter space [m,n] is unbounded…



Hough transform - experiments

Hough spaceOriginal space  θ

ρ



How to compute the intersection point? In presence of noise!
IDEA: introduce a grid a count intersection points in each cell

Hough transform - experiments

Noisy data

Hough spaceOriginal space  θ

ρ

Issue: Grid size needs to be adjusted…



• All points are processed independently, so can 
cope with occlusion/outliers

• Some robustness to noise: noise points unlikely to 
contribute consistently to any single cell

Hough transform - conclusions

Good:

Bad:
• Spurious peaks due to uniform noise
• Trade-off noise-grid size (hard to find sweet point)
• Doesn’t handle well high dimensional models



Courtesy of Minchae Lee

Applications – lane detection



Applications – computing vanishing 
points



Generalized Hough transform
D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern Recognition 
13(2), 1981

• Parameterize a shape by measuring the location of 
its parts and shape centroid

• Given a set of  measurements, cast a vote in the Hough 
(parameter) space

[more on forthcoming lectures]

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape 
Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

• Used in object recognition!  (the implicit shape model) 

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
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• Problem formulation
• Least square methods
• RANSAC
• Hough transforms 
• Multi-model fitting
• Fitting helps matching!

Lecture 9
Fitting and Matching



Fitting multiple models

• Incremental fitting

• E.M. (probabilistic fitting)

• Hough transform



Incremental line fitting
Scan data point sequentially (using locality constraints)

Perform following loop:

1. Select N point and fit line to N points
2. Compute residual RN

3. Add a new point, re-fit line and re-compute RN+1

4. Continue while line fitting residual is small enough, 

 When residual exceeds a threshold, start fitting new 
model (line)



Hough transform
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Same cons and pros as before…



Lecture 8 -Silvio Savarese & Jeanette Bohg 2-Feb-22

• Problem formulation
• Least square methods
• RANSAC
• Hough transforms 
• Multi-model fitting
• Fitting helps matching!

Lecture 9
Fitting and Matching



Features are matched (for instance, based on correlation)

Fitting helps matching!

window
window

Image 1 Image 2



Idea: 
• Fitting an homography H (by RANSAC) mapping features from images 1 to 2 
• Bad matches will be labeled as outliers (hence rejected)!

Matches based on appearance only
Green: good matches
Red: bad matches

Image 1 Image 2

Fitting helps matching!



Fitting helps matching!



M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th International 
Conference on Computer Vision -- ICCV2003

Recognising Panoramas



Next lecture:

Low Level Representations





bAx =
• More equations than unknowns

• Look for solution which minimizes ||Ax-b|| = (Ax-b)T(Ax-b)
• Solve                              

• LS solution 
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Least squares methods
- fitting a line -



t1t A)AA(A −+ =

with equal to          for all nonzero singular
values and zero otherwise

1−∑

= pseudo-inverse of A

Solving bAAAx tt 1)( −=

Least squares methods
- fitting a line -

tVUA ∑= = SVD decomposition of A

+∑



Least squares methods
- fitting an homography -

A h = 0

0

h

h
h

3,3

2,1

1,1

=


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


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
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From n>=4 corresponding points:



Issue: spurious peaks due to uniform noise
features votes

Hough transform - experiments
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