CS231A Computer Vision: From 3D Reconstruction to Recognition

Optimal Estimation

Silvio Savarese & Jeannette Bohg

Lecture 14

Perception as a Continuous Process

Silvio Savarese & Jeannette Bohg

Lecture 14

3

Perception as a Multi-Modal Experience

Silvio Savarese & Jeannette Bohg

Lecture 14

Perception as Inference

Silvio Savarese & Jeannette Bohg

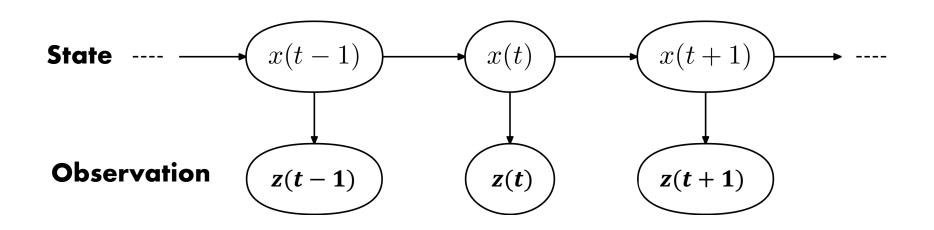
Lecture 14

Recursive State Estimation

Mathematical Formalism to:

- continuously integrate measurements
- \circ from different sensor sources
- \circ to infer the state of a latent variable

What is a state? What is a representation?



Hidden Markov Model

Silvio Savarese & Jeannette Bohg

Lecture 14

7

Representations for Autonomous Driving

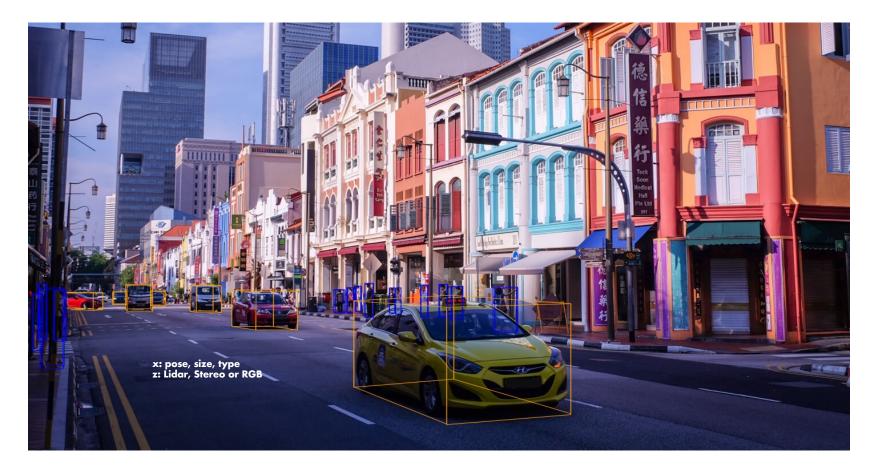


Image adapted from NuScenes by Motional. nuscenes.org

Silvio Savarese & Jeannette Bohg

Lecture 14

Representations for Manipulation

Lecture 14

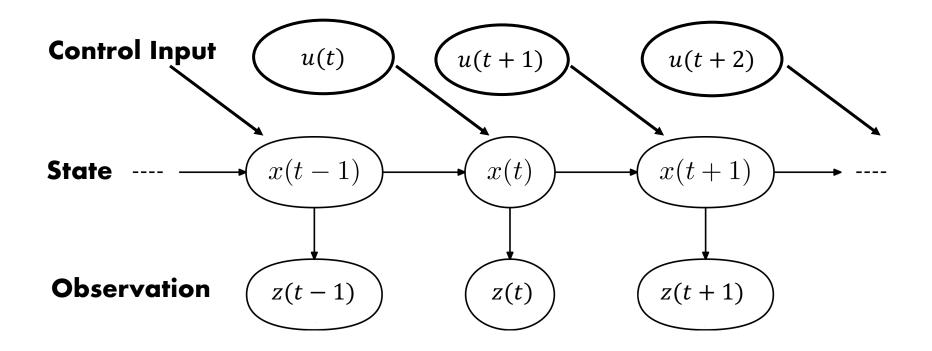
9

14-May-24

Manuel Wühtrich et al. "Probabilistic Object Tracking using a Depth Camera", IROS 2013

Silvio Savarese & Jeannette Bohg

Why do we care about state estimation in Robotics?



Partially Observable Markov Decision Process

Silvio Savarese & Jeannette Bohg

Lecture 14

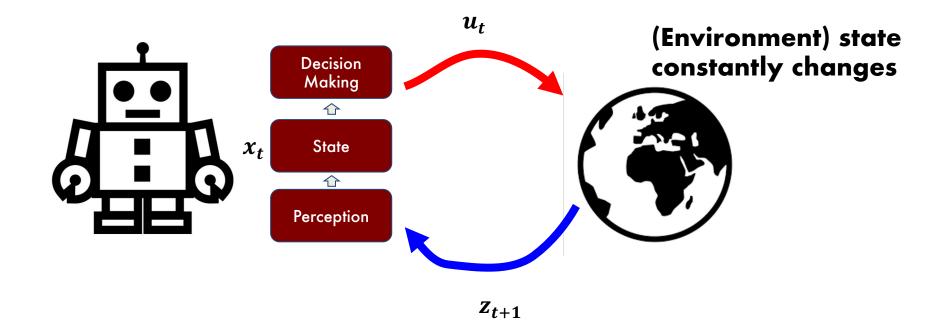
14-May-24

Today

- Intro: Why state estimation?
- Bayes Filter
- Kalman Filter
- Extended Kalman Filter

- For more depth:
 - AA 273: State Estimation and Filtering for Robotic Perception Mac Schwager

The Agent and the Environment



Silvio Savarese & Jeannette Bohg

Lecture 14

13

Notation (x(t-1)) (x(t)) (x(t+1)) (z(t-1)) (z(t)) (z(t+1))

- x State of dynamical system, dim n
- $x_t\;$ Instantiation of system state at time t
- z Sensor Observation Vector, dim k
- z_t Specific Observation at time t
- u Robot action / control input, dim m
- u_t Robot action / control input at time t $p(x_t|z_{0:t},u_{0:t})$ Probability distribution

Markov Assumption

State is complete

Silvio Savarese & Jeannette Bohg

Lecture 14

15

Probabilistic Generative Laws

- Evolution of state and measurement governed by probabilistic laws
- *x_t* generated stochastically

Silvio Savarese & Jeannette Bohg

Lecture 14

22

State Transition Model

• Probability distribution conditioned on all previous states, measurements and controls

$$p(x_t \mid x_{0:t-1}, z_{1:t-1}, u_{1:t}) \xrightarrow{(x(t-1))} \xrightarrow{(x(t-1))} \xrightarrow{(x(t-1))} \xrightarrow{(x(t-1))} \xrightarrow{(x(t+1))} \xrightarrow$$

• Assumption: State complete

$$p(x_t \mid x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t \mid x_{t-1}, u_t)$$

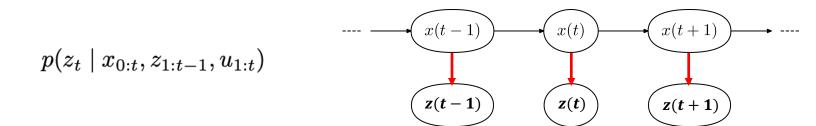
Silvio Savarese & Jeannette Bohg

Lecture 14

23

Measurement Model

• Probability distribution conditioned on all previous states, measurements and controls



• Assumption: State complete

$$p(z_t \mid x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t \mid x_t)$$

Silvio Savarese & Jeannette Bohg

14-May-24

Belief Distribution

- Assigns probability to each possible hypothesis about what the true state may be
- Posterior distributions over state conditioned on all the data

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

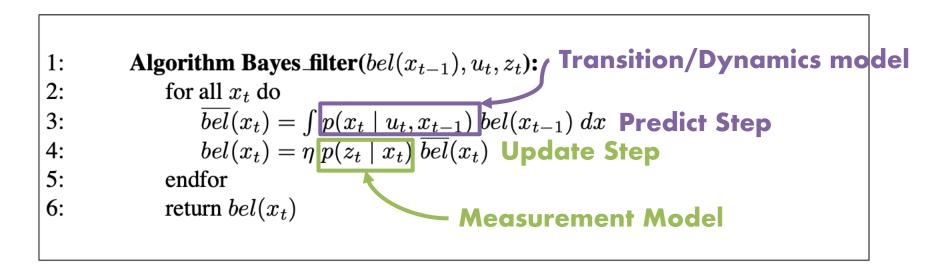
Before incorporating measurement Z_t = prediction

$$\overline{bel}(x_t) = p(x_t \mid z_{1:t-1}, u_{1:t})$$

Silvio Savarese & Jeannette Bohg

The Bayes Filter

• Recursive filter for estimating x_t only from x_{t-1}, z_t and u_t and not from the ever-growing history $z_{1:t}, u_{1:t}$



Silvio Savarese & Jeannette Bohg

Lecture 14

14-May-24

Simple example – Belief & Measurement Model

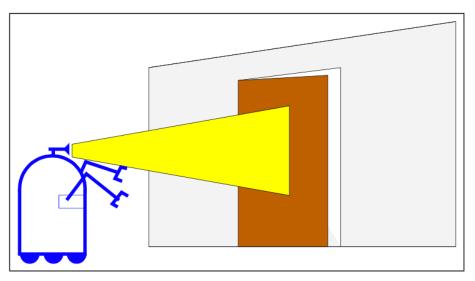


Figure 2.2 A mobile robot estimating the state of a door.

$bel(X_0 = \mathbf{open}) = 0.5$	$p(Z_t = \mathbf{sense_open} \mid X_t = \mathbf{is_open}) = 0.6$
----------------------------------	--

$$bel(X_0 = closed) = 0.5$$

$$p(Z_t = \mathbf{sense_closed} \mid X_t = \mathbf{is_open}) = 0.4$$

$$p(Z_t = \mathbf{sense_open} \mid X_t = \mathbf{is_closed}) = 0.2$$

$$p(Z_t = \mathbf{sense_closed} \mid X_t = \mathbf{is_closed}) = 0.8$$

Silvio Savarese & Jeannette Bohg

Lecture 14

Simple example – Transition Model

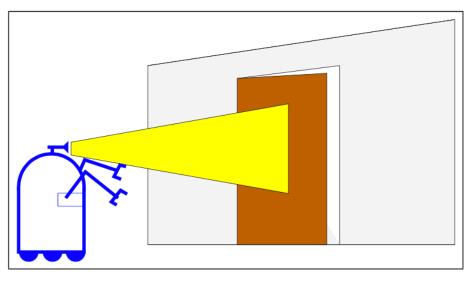


Figure 2.2 A mobile robot estimating the state of a door.

=	1	$p(X_t = \mathbf{is}_{-}\mathbf{open} \mid U_t = \mathbf{do}_{-}\mathbf{nothing}, X_{t_{-}1} = \mathbf{is}_{-}\mathbf{open}) = 1$
=	0	$p(X_t = \mathbf{is}_{-}\mathbf{closed} \mid U_t = \mathbf{do}_{-}\mathbf{nothing}, X_{t_{-}1} = \mathbf{is}_{-}\mathbf{open}) = 0$
=	0.8	$p(X_t = \mathbf{is_open} \mid U_t = \mathbf{do_nothing}, X_{t_1} = \mathbf{is_closed}) = 0$
=	0.2	$p(X_t = \mathbf{is_closed} \mid U_t = \mathbf{do_nothing}, X_{t_1} = \mathbf{is_closed}) = 1$
	=	= 1 = 0 = 0.8 = 0.2

Silvio Savarese & Jeannette Bohg

Lecture 14

29

The Bayes Filter - Derivation

• Bayes Rule p(a,b) = p(a|b)p(b) = p(b|a)p(a) $p(a|b) = \frac{p(b|a)p(a)}{p(b)}$ $p(x_t \mid z_{1:t}, u_{1:t}) = \frac{p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})}{p(z_t \mid z_{1:t-1}, u_{1:t})}$ Normalization

Silvio Savarese & Jeannette Bohg

Lecture 14

30

The Bayes Filter - Derivation

- State is complete $p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) = p(z_t \mid x_t)$
- Simplify

$$p(x_t \mid z_{1:t}, u_{1:t}) = \frac{p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \ p(x_t \mid z_{1:t-1}, u_{1:t})}{p(z_t \mid z_{1:t-1}, u_{1:t})}$$

$$= \eta \ p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \ p(x_t \mid z_{1:t-1}, u_{1:t})$$

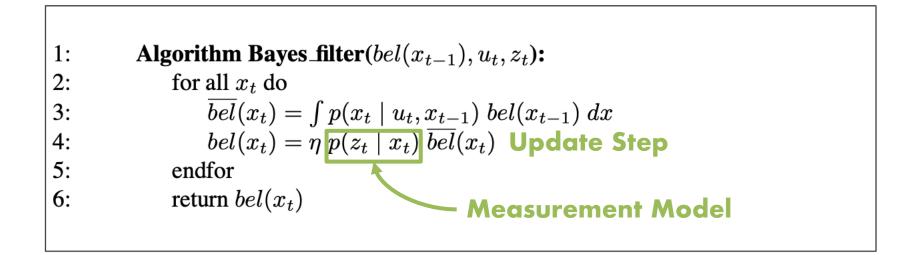
$$= \eta \ p(z_t \mid x_t) \ p(x_t \mid z_{1:t-1}, u_{1:t})$$
simplified

Silvio Savarese & Jeannette Bohg

Lecture 14

14-May-24

The Bayes Filter - Derivation $p(x_t \mid z_{1:t}, u_{1:t}) = \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$ $bel(x_t) = \eta p(z_t \mid x_t) \overline{bel}(x_t)$ This still depends on entire history



Silvio Savarese & Jeannette Bohg

Lecture 14

14-May-24

The Bayes Filter - Derivation

 $bel(x_t) = \eta p(z_t \mid x_t) \overline{bel}(x_t)$

• Total probability $p(a) = \int p(a|b)p(b)db$

$$\overline{bel}(x_t) = p(x_t \mid z_{1:t-1}, u_{1:t}) \\ = \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$$

• State is complete Previous Belief over x

$$\underline{p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t})} = p(x_t \mid x_{t-1}, u_t)$$

Silvio Savarese & Jeannette Bohg

Lecture 14

33

The Bayes Filter - Derivation

$$p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) = p(x_t \mid x_{t-1}, u_t)$$

$$\overline{bel}(x_t) = p(x_t \mid z_{1:t-1}, u_{1:t})
= \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}
= \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}
simplified$$

1: Algorithm Bayes_filter(
$$bel(x_{t-1}), u_t, z_t$$
): Transition/Dynamics model
2: for all x_t do
3: $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) bel(x_{t-1}) dx$ Predict Step
4: $bel(x_t) = \eta p(z_t \mid x_t) bel(x_t)$
5: endfor
6: return $bel(x_t)$

Silvio Savarese & Jeannette Bohg

Lecture 14

14-May-24

Limitations

- 1. p(x) is defined $\forall x$ intractable
 - Discrete and small spaces
 - Continuous and/or large spaces Moments,
 Finite # of samples
- 2. The integral term -> costly to compute

Silvio Savarese & Jeannette Bohg Lecture 14

The Bayes Filter

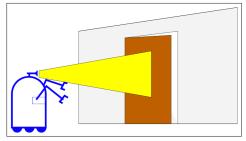
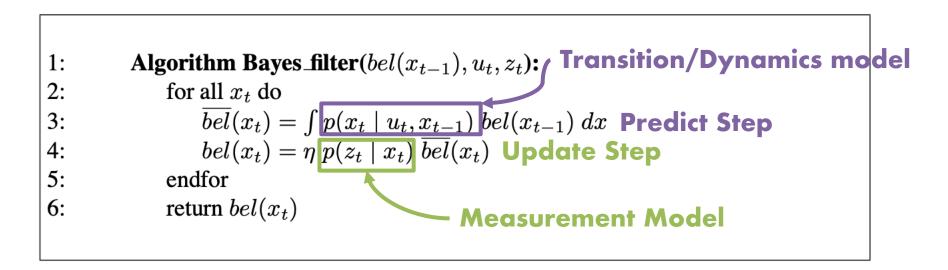


Figure 2.2 A mobile robot estimating the state of a door.

Recursive filter for estimating x_t only from
 x_{t-1}, z_t and u_t and not from the ever-growing
 history z_{1:t}, u_{1:t}



Silvio Savarese & Jeannette Bohg

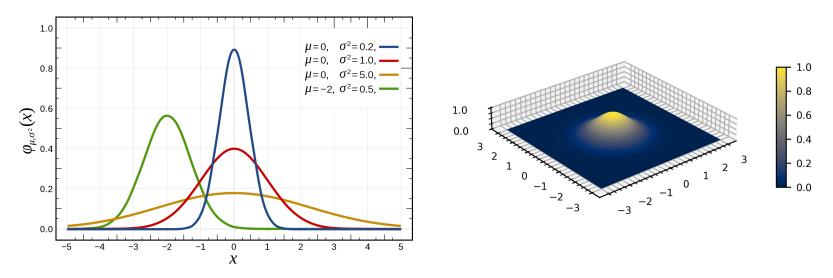
Lecture 14

14-May-24

Gaussian Filters - Kalman Filter

 $\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

 $p(x) = \det (2\pi\Sigma)^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right\}$

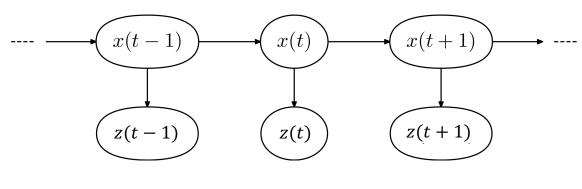


Silvio Savarese & Jeannette Bohg

Lecture 14

14-May-24

Kalman Filter



- Gaussian Belief
- Linear Transition Model

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t \qquad x_t$$

Process Noise $\varepsilon \sim N(0, R)$

• Linear Measurement Model

$$z_t = C_t x_t + \delta_t$$

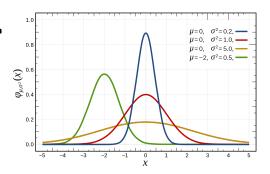
Measurement Noise $\delta \sim N(0, Q)$

Silvio Savarese & Jeannette Bohg

Lecture 14

14-May-24

Kalman Filter



• Initial Belief $x_0 \sim N(\mu_0, \Sigma_0)$

 $bel(x_0) = p(x_0) = \det (2\pi\Sigma_0)^{-\frac{1}{2}} \exp \left\{-\frac{1}{2} (x_0 - \mu_0)^T \Sigma_0^{-1} (x_0 - \mu_0)\right\}$

• Distribution over next state $p(x_t \mid u_t, x_{t-1})$ $= \det (2\pi R_t)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x_t - A_t x_{t-1} - B_t u_t) \right\}$ Frocess Noise

Transition Model

• Likelihood of Measurement Measurement Noise $p(z_t | x_t) = \det (2\pi Q_t)^{-\frac{1}{2}} \exp \{-\frac{1}{2}(z_t - \underline{C_t x_t})^T Q_t^{-1}(z_t - \underline{C_t x_t})\}$ Silvio Savarese & Jeannette Bohg Lecture 14 45 14-May-24

The Kalman Filter Algorithm

1: Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):						
2: 3: 4: 5:	$ \frac{\bar{\mu}_{t} = A_{t} \ \mu_{t-1} + B_{t} \ u_{t}}{\bar{\Sigma}_{t} = A_{t} \ \Sigma_{t-1} \ A_{t}^{T} + R_{t}} \\ \frac{K_{t} = \bar{\Sigma}_{t} \ C_{t}^{T} (C_{t} \ \bar{\Sigma}_{t} \ C_{t}^{T} + Q_{t})^{-1}}{\mu_{t} = \bar{\mu}_{t} + K_{t} (z_{t} - C_{t} \ \bar{\mu}_{t})} $	Uncertainty increases K = Kalman Gain $K \approx \frac{R}{Q}$				
6: 7:	$\frac{\sum_{t} = (I - K_t C_t) \overline{\Sigma}_t}{\sum_{t} \text{return } \mu_t, \Sigma_t}$	Uncertainty decreases				

If D lange the K is lange

1: 2: 3: 4: 5: 6:	2: for all x_t do 3: $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx$ Predict Step 4: $bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$ Update Step 5: endfor		If R large, then K is large. Update dominated by innovation. If Q large, then K is small. Update dominated by prediction.	
	Silvio Savarese & Jeannette Bohg	Lecture 14	47	14-May-24

Example

 $p(z_0|x_0)$

Measurement

 $bel(x_0)$ After Update

 $p(x_0)$

 $\overline{bel}(x_1)$ After Prediction

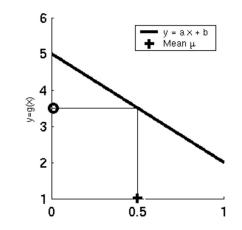
 $p(z_1|x_1)$ Measurement $bel(x_1)$ After Update

Silvio Savarese & Jeannette Bohg

Lecture 14

14-May-24

Propagating a Gaussian through a Linear Model

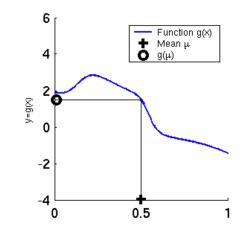


Silvio Savarese & Jeannette Bohg

Lecture 14

56

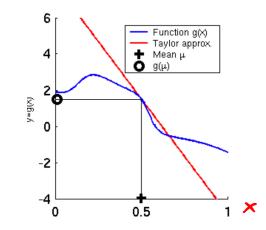
Propagating a Gaussian through a Non-Linear Model



Silvio Savarese & Jeannette Bohg

Lecture 14

Linearizing the Non-Linear Model



Silvio Savarese & Jeannette Bohg

Lecture 14

58

Representations for Manipulation

Lecture 14

59

14-May-24

Manuel Wühtrich et al. "Probabilistic Object Tracking using a Depth Camera", IROS 2013

Silvio Savarese & Jeannette Bohg

Extended Kalman filter -Process Model

$egin{array}{rcl} x_t &=& g(u_t, x_{t-1}) + arepsilon_t & ext{Process Model} \ z_t &=& h(x_t) + \delta_t \ . & ext{Measurement Model} \end{array}$

First order Taylor Expansion – linear approximation around value and slope

$$g'(u_t, x_{t-1}) := rac{\partial g(u_t, x_{t-1})}{\partial x_{t-1}}$$
 Gradient of Nonlinear function around x_{t-1}

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \underbrace{g'(u_t, \mu_{t-1})}_{=: G_t} (x_{t-1} - \mu_{t-1})$$

$$= g(u_t, \mu_{t-1}) + \underbrace{G_t (x_{t-1} - \mu_{t-1})}_{\text{Jacobian}}$$

Silvio Savarese & Jeannette Bohg

Lecture 14

14-May-24

Extended Kalman filter -Process Model

$$egin{aligned} g(u_t, x_{t-1}) &pprox & g(u_t, \mu_{t-1}) \ + & \underbrace{g'(u_t, \mu_{t-1})}_{=: \ G_t} (x_{t-1} - \mu_{t-1}) \ & = & g(u_t, \mu_{t-1}) \ + & G_t \ (x_{t-1} - \mu_{t-1}) \end{aligned}$$

Same equations as in previous slide

Written as Gaussian:

$$p(x_t \mid u_t, x_{t-1}) \\\approx \det (2\pi R_t)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \left[x_t - g(u_t, \mu_{t-1}) - G_t \left(x_{t-1} - \mu_{t-1} \right) \right]^T \right. \\\left. R_t^{-1} \left[x_t - g(u_t, \mu_{t-1}) - G_t \left(x_{t-1} - \mu_{t-1} \right) \right] \right\}$$

Silvio Savarese & Jeannette Bohg

Lecture 14

14-May-24

Extended Kalman Filter – Measurement Model

$egin{array}{rcl} x_t &=& g(u_t, x_{t-1}) + arepsilon_t & ext{Process Model} \ z_t &=& h(x_t) + \delta_t \ . & ext{Measurement Model} \end{array}$

First order Taylor Expansion – linear approximation around value and slope

$$h(x_t) \approx h(\bar{\mu}_t) + \underbrace{h'(\bar{\mu}_t)}_{=:H_t} (x_t - \bar{\mu}_t)$$
$$= h(\bar{\mu}_t) + H_t (x_t - \bar{\mu}_t)$$

Jacobian

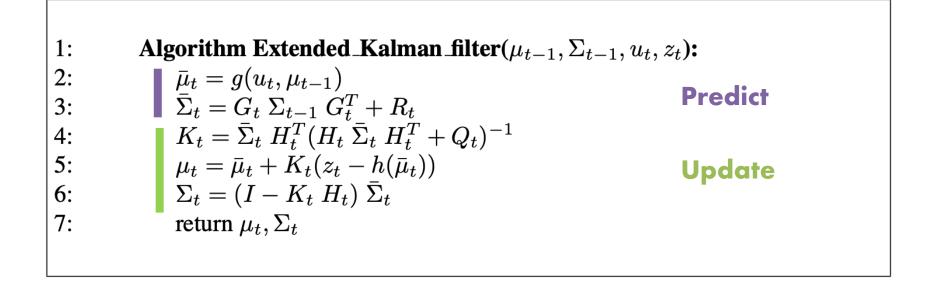
Written as Gaussian:

$$p(z_t \mid x_t) = \det (2\pi Q_t)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \left[z_t - h(\bar{\mu}_t) - H_t \left(x_t - \bar{\mu}_t \right) \right]^T \right\}$$
$$Q_t^{-1} \left[z_t - h(\bar{\mu}_t) - H_t \left(x_t - \bar{\mu}_t \right) \right] \right\}$$

Silvio Savarese & Jeannette Bohg

14-May-24

The Extended Kalman Filter Algorithm



	Kalman filter	EKF
state prediction (Line 2)	$A_t \mu_{t-1} + B_t u_t$	$g(u_t,\mu_{t-1})$
measurement prediction (Line 5)	$ \qquad C_t \; ar{\mu}_t$	$h(ar{\mu}_t)$

Silvio Savarese & Jeannette Bohg

Lecture 14

66

CS231 Introduction to Computer Vision

Next lecture: *Optimal Estimation cont'*

Silvio Savarese & Jeannette Bohg

Lecture 14

