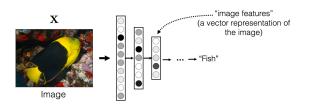
CS231A Computer Vision: From 3D Reconstruction to Recognition

Optical and Scene Flow

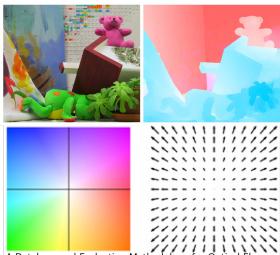
Silvio Savarese & Jeannette Bohg

Learning Goals for Upcoming Lectures

Representations & Representation Learning

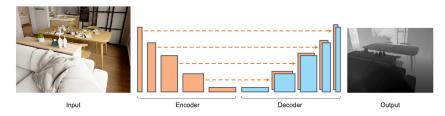


Optical & Scene Flow

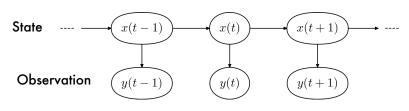


A Database and Evaluation Methodology for Optical Flow. Baker et al. IJCV. 2011

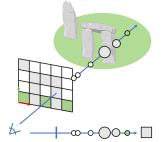
Monocular Depth Estimation, Feature Tracking



Optimal Estimation



Neural Radiance Fields



Silvio Savarese & Jeannette Bohg

Lecture 12

2

12-May-24

What will you learn today?

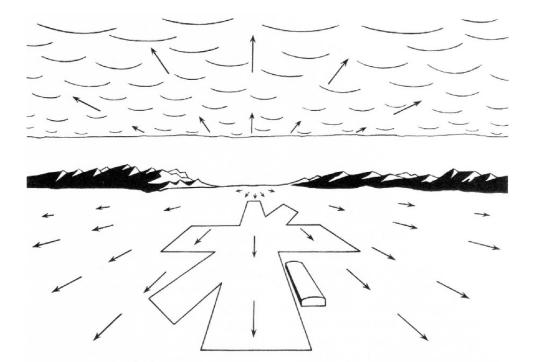
Optical Flow

- What is it and why do you care?
- Assumptions
- Formulating the optimization problem Solving it

Scene Flow

Learning-based Approaches to Estimating Motion

Optical Flow - What is it?



J. J. Gibson, The Ecological Approach to Visual Perception

Silvio Savarese & Jeannette Bohg

Lecture 12

Optical Flow - What is it?

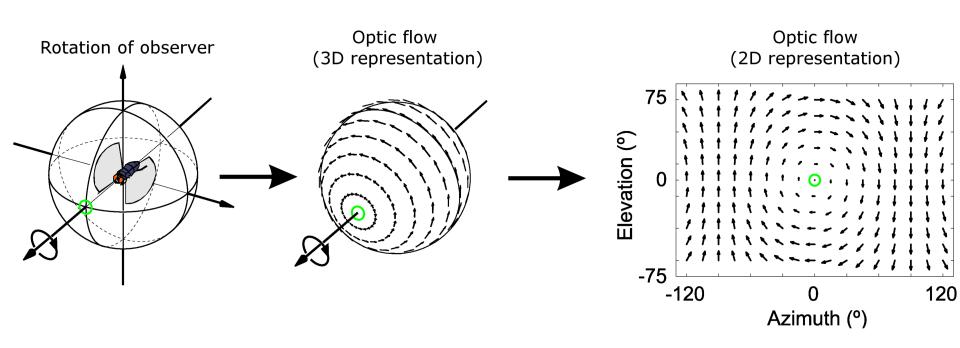


Image Credit: Wikipedia. Optical Flow.

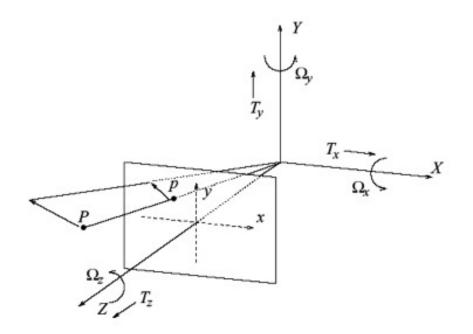
Silvio Savarese & Jeannette Bohg

Lecture 12

5

12-May-24

Motion Field

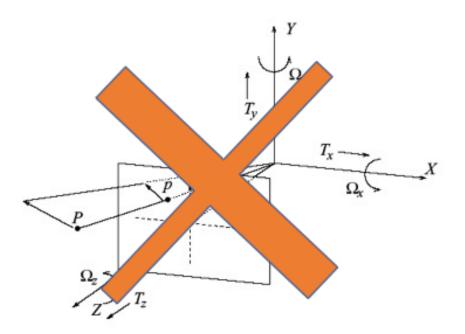


Motion field = 2D motion field representing the projection of the 3D motion of points in the scene onto the image plane.

B. Horn, Robot Vision, MIT Press

Silvio Savarese & Jeannette Bohg Lecture 12

Optical flow



Optical flow = 2D velocity field describing the **apparent** motion in the images.

B. Horn, Robot Vision, MIT Press

Silvio Savarese & Jeannette Bohg

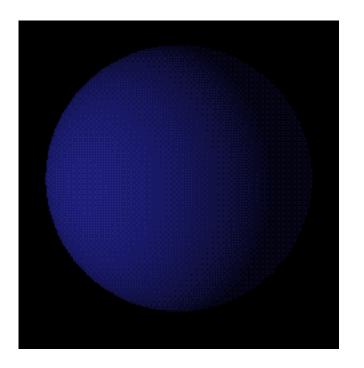
Lecture 12

What is the motion field? What is the apparent motion?

Lambertian (matte) ball rotating in 3D

What does the 2D motion field look like?

What does the 2D optical flow field look like?



Slide Credit: Michael Black

Image source: http://www.evl.uic.edu/aej/488/lecture12.html

12-May-24

Silvio Savarese & Jeannette Bohg

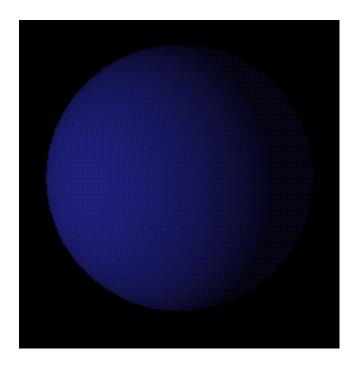
What is the motion field? What is the apparent motion?

Stationary Lambertian (matte) ball

Moving Light Source

What does the 2D motion field look like?

What does the 2D optical flow field look like?



Slide Credit: Michael Black

Image source: http://www.evl.uic.edu/aej/488/lecture12.html

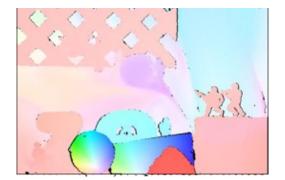
12-May-24

Silvio Savarese & Jeannette Bohg

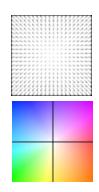
Optical flow - What is it?

Motion Displacement of all image pixels

Image pixel value at time t and Location $\mathbf{x} = (x, y)$: I(x, y, t)



u(x, y) horizontal component v(x, y) vertical component



Key

12-May-24

Slide Credit: Michael Black

15

Silvio Savarese & Jeannette Bohg

Painterly effect

Slide Credit: Michael Black

16

Silvio Savarese & Jeannette Bohg



Face morphing in matrix reloaded

George Borshukov, Dan Piponi, Oystein Larsen, J.P.Lewis, Christina Tempelaar-Lietz ESC Entertainment

SIGGRAPH'03

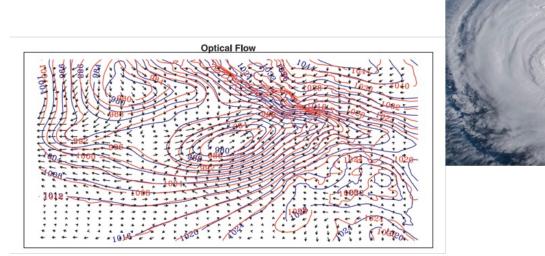
Slide Credit: Michael Black

17

Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24



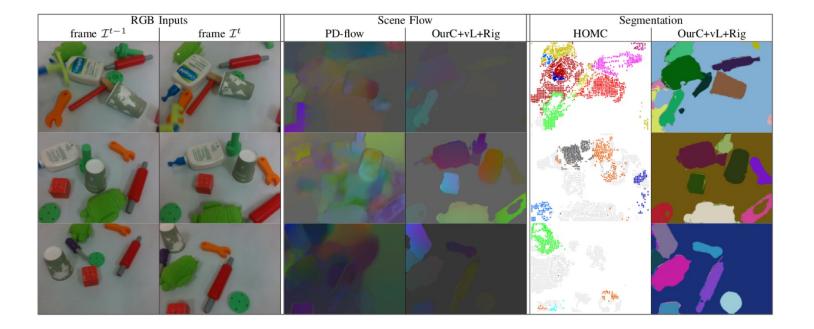
<u>Caren Marzban</u> and <u>Scott Sandgathe</u> Optical Flow for Verification, Weather and Forecasting, Volume 25 No. 5, October 2010

Slide Credit: Michael Black

19

12-May-24

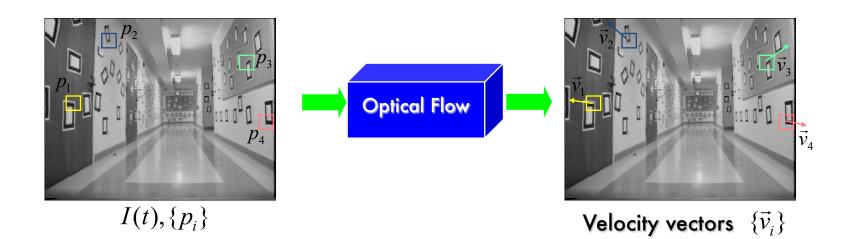
Silvio Savarese & Jeannette Bohg



Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24



Slide Credit: CS223b – Sebastian Thrun

Silvio Savarese & Jeannette Bohg

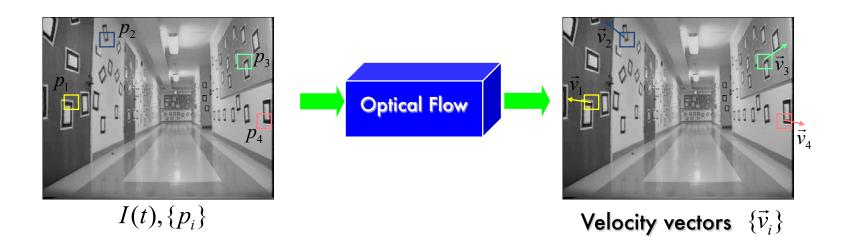
Compute Optical Flow

Goal

Compute the **apparent** 2D image motion of pixels from one image frame to the next in a video sequence.

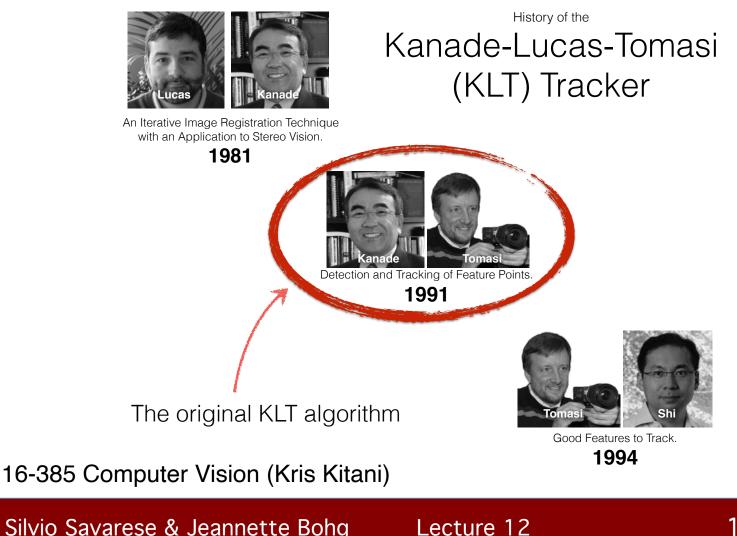
Silvio Savarese & Jeannette Bohg

Compute (Sparse) Optical Flow Also see CS131a



Silvio Savarese & Jeannette Bohg

Simple KLT Tracker



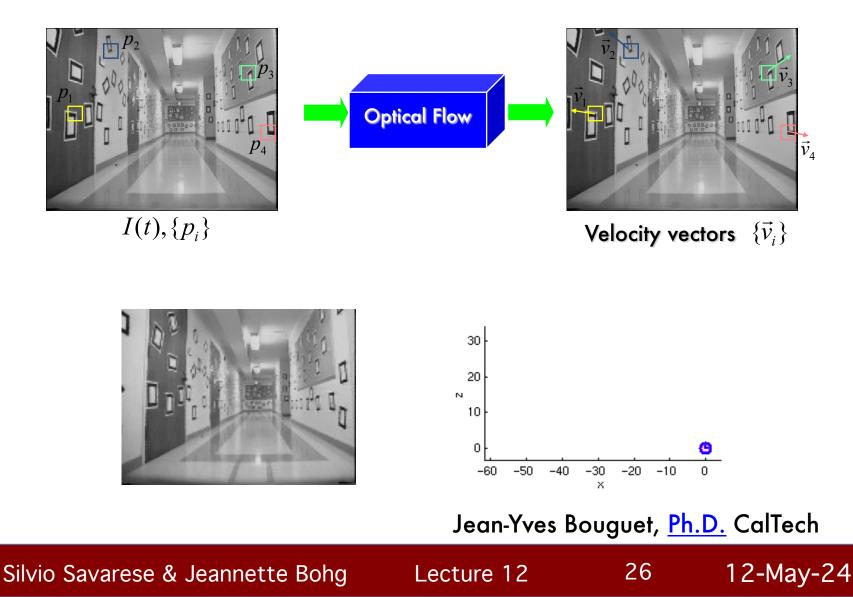
12-May-24

Silvio Savarese & Jeannette Bohg

Simple KLT Tracker

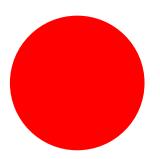
- 1. Find good points to track (Harris corners)
- For each Harris corner compute motion (translation or affine) between consecutive frames
- 3. Link motion vector of successive frames to get a track for each Harris point
- 4. Introduce new Harris points by running detector every 10-15 frames
- 5. Track old and new corners using step 1-3

Computing (Sparse) Optical Flow

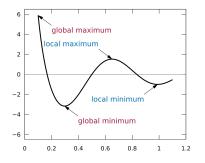


Compute (Dense) Optical Flow

Step 1 - Assumptions



Step 2 - Objective Function



Source: Wikipedia.

Step 3 - Optimization

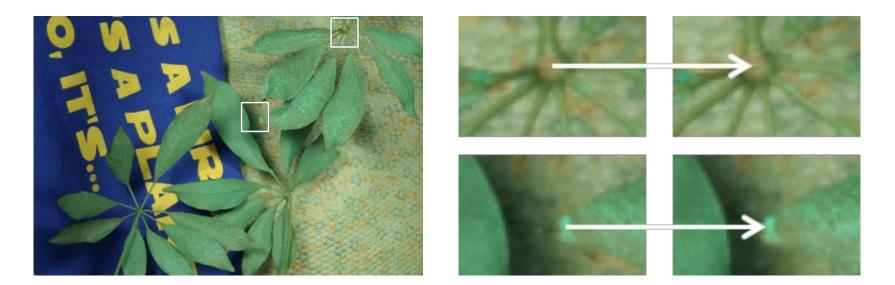
27

Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

Assumption 1 - Brightness Constancy



I(x + u, y + v, t + 1) = I(x, y, t)

u,v = pixel offset t = time x,y = pixel position

Slide Credit: Michael Black

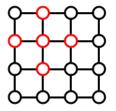
28

12-May-24

Silvio Savarese & Jeannette Bohg

Assumption 2 - Spatial Smoothness

- Neighboring pixels in the image are likely to belong to the same surface.
- Surfaces are mostly smooth.
- Neighboring pixels will have similar flow.



Slide Credit: Michael Black

Silvio Savarese & Jeannette Bohg

Assumption 3 – Temporal Coherence

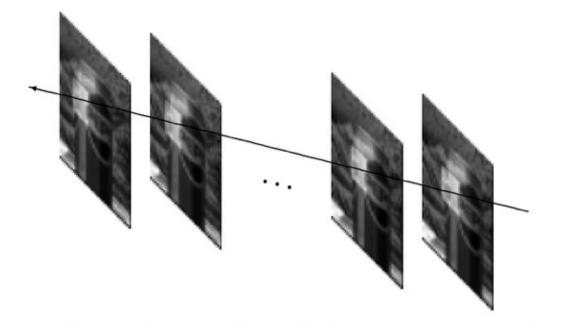


Figure 1.8: Temporal continuity assumption. A patch in the image is assumed to have the same motion (constant velocity, or acceleration) over time.

Slide Credit: Michael Black

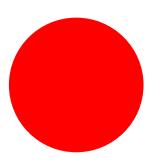
30

12-May-24

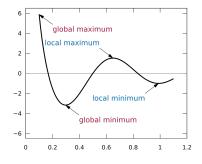
Silvio Savarese & Jeannette Bohg

Compute Optical Flow

Step 1 - Assumptions



Step 2 - Objective Function



Source: Wikipedia.

Silvio Savarese & Jeannette Bohg

Lecture 12

31

<u>12-May-24</u>

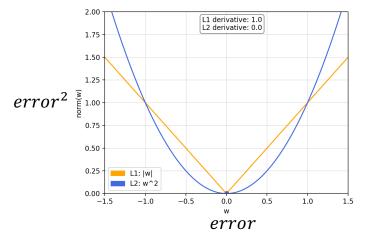
Objective Function – Data term -Brightness Constancy

u, v = optical flow field

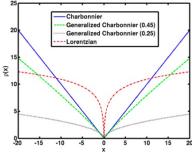
$$E_D(\mathbf{u}, \mathbf{v}) = \sum_{S = \text{ oll pixels}} (I(x_s + u_s, y_s + v_s, t + 1) - I(x, y, t))^2$$

New Assumption: Quadratic error implies Gaussian noise

Quadratic penalty



Alternative: Huber/L1 Loss



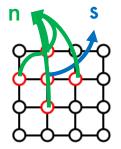
Silvio Savarese & Jeannette Bohg

Lecture 12

<u>32</u> <u>1</u>2-May-24

Objective Function – Spatial Term – Spatial Smoothness

$$E_{S}(\mathbf{u}, \mathbf{v}) = \sum_{n \in G(S)} (u_{S} - u_{n})^{2} + \sum_{n \in G(S)} (v_{S} - v_{n})^{2}$$
$$G(S) = \text{Pixel Neighborhood}$$



New Assumptions: Flow field smooth Gaussian Deviations First order smoothness good enough Flow derivative approximated by first differences

Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

Objective Function

Optimization Variables

- Relative weighting term

 $E(u,v) = E_D(u,v) + \lambda E_S(u,v)$

 $E(u,v) = \sum_{s} (I(x_s + u_s, y_s + v_s, t + 1) - I(x, y, t))^2 + \lambda \left(\sum_{n \in G(s)} (u_s - u_n)^2 + \sum_{n \in G(s)} (v_s - v_n)^2 \right)$

Data term

Spatial term

Nonlinear Optimization

Silvio Savarese & Jeannette Bohg

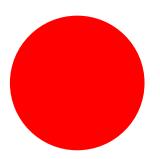
Lecture 12

34

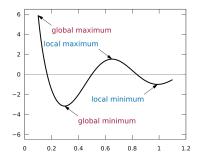
12-May-24

Compute Optical Flow

Step 1 - Assumptions



Step 2 - Objective Function



Source: Wikipedia.

Step 3 - Optimization

35

Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

Linear Approximation

$$E(u,v) = E_D(u,v) + \lambda E_S(u,v)$$

$$E(u,v) = \sum_s (I(x_s + u_s, y_s + v_s, t + 1) - I(x, y, t))^2 + \lambda (\sum_{n \in G(s)} (u_s - u_n)^2 + \sum_{n \in G(s)} (v_s - v_n)^2)$$

$$u_s = dx, v_s = dy, dt = 1$$

Partial Derivative Partial Derivative in x direction in y direction $I(x, y, t) + dx \frac{\delta}{\delta x}I(x, y, t) + dy \frac{\delta}{\delta y}I(x, y, t) + dt \frac{\delta}{\delta t}I(x, y, t) - I(x, y, t) = 0$

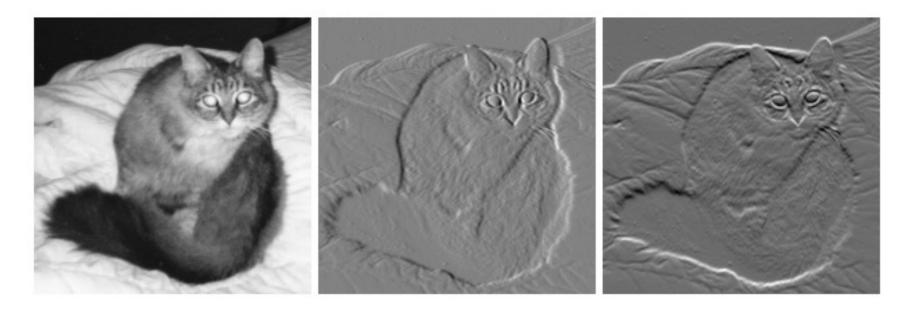
Constraint Equation for Optical Flow

Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

Example Image Gradient



 I_x

 I_y

Silvio Savarese & Jeannette Bohg

Ι

Lecture 12

37

12-May-24

Optical Flow Constraint Equation

Linearized cost function

$$u\frac{\delta}{\delta x}I(x,y,t) + v\frac{\delta}{\delta y}I(x,y,t) + \frac{\delta}{\delta t}I(x,y,t) = 0$$

 $I_x u + I_y v + I_t = 0$ = Constraint at every pixel

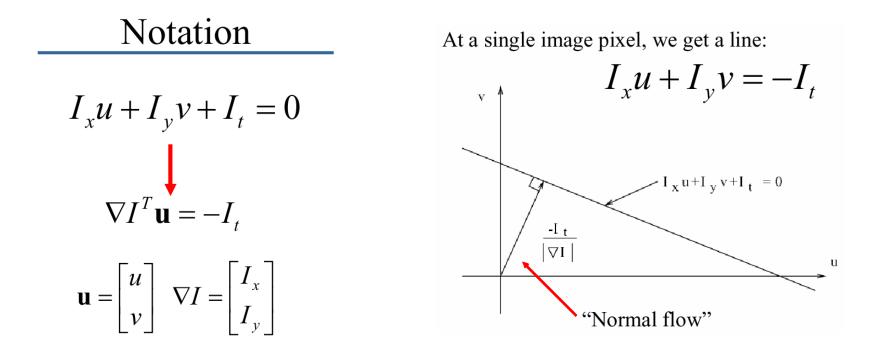
New Assumptions: Flow is small Image is differentiable First order Taylor series is a good approximation

Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

Optical Flow Constraint Equation

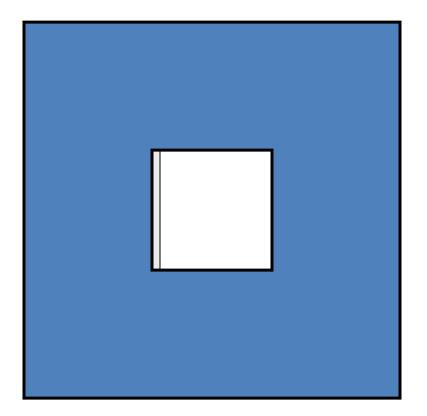


Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

Aperture Problem

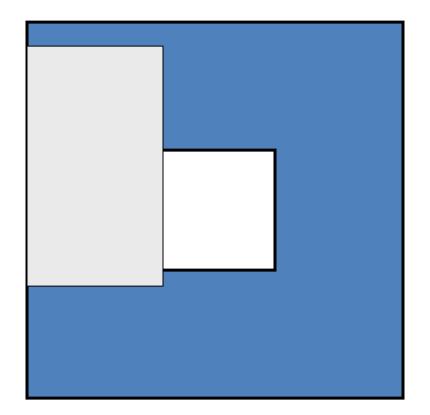


Slide Credit: CS223b - Sebastian Thrun

Silvio Savarese & Jeannette Bohg

Lecture 12

Aperture Problem

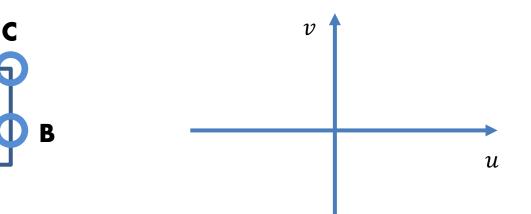


Slide Credit: CS223b - Sebastian Thrun

Silvio Savarese & Jeannette Bohg

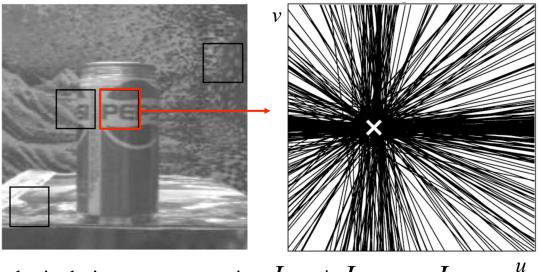
Lecture 12

What are the constraint lines?



Silvio Savarese & Jeannette Bohg

Multiple Constraints



Each pixel gives us a constraint: $I_x u + I_y v = -I_t$

Slide Credit: Michael Black

47

12-May-24

Silvio Savarese & Jeannette Bohg

How do we solve this optimization problem?

$$E(u,v) = \sum_{x,y \in R} (I_x(x,y,t)u + I_y(x,y,t)v + I_t(x,y,t))^2$$

$$\frac{\partial E}{\partial u} = \sum_{R} (I_x u + I_y v + I_t) I_x = 0$$
$$\frac{\partial E}{\partial v} = \sum_{R} (I_x u + I_y v + I_t) I_y = 0$$

Horn-Schunk Method

Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

How do we solve this optimization problem?

Rearrange in Matrix form

$$\left[\sum_{R} I_{x}^{2}\right] u + \left[\sum_{R} I_{x} I_{y}\right] v = -\sum_{R} I_{x} I_{t}$$
$$\left[\sum_{R} I_{x} I_{y}\right] u + \left[\sum_{R} I_{y}^{2}\right] v = -\sum_{R} I_{y} I_{t}$$

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$$

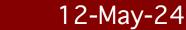
Silvio Savarese & Jeannette Bohg

How do we solve this optimization problem?

$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$ Au = b

Silvio Savarese & Jeannette Bohg

Lecture 12



How do we solve this optimization problem? $\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$ Au = b

If A was invertible $A^{-1}Au = A^{-1}b$ $u = A^{-1}b$ $A^{T}Au = b$ $A^{T}Au = A^{T}b$ $u = (A^{T}A)^{-1}A^{T}b$

Pseudoinverse

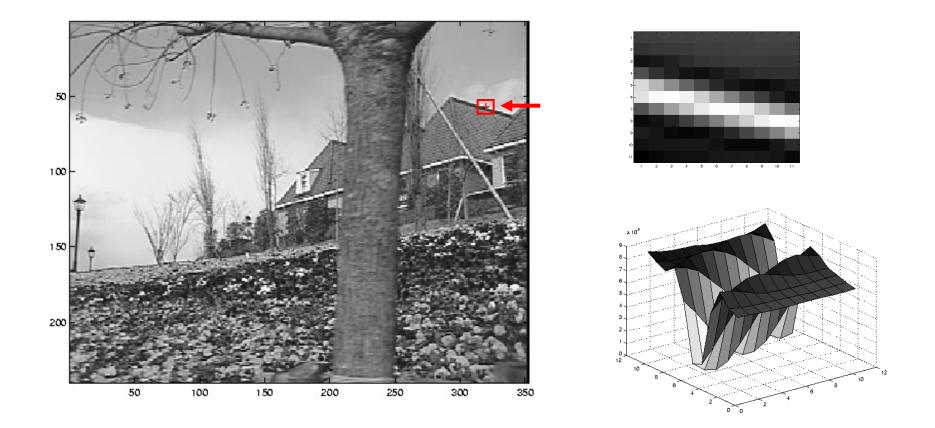
51

Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

Image Gradient Examples - Edge

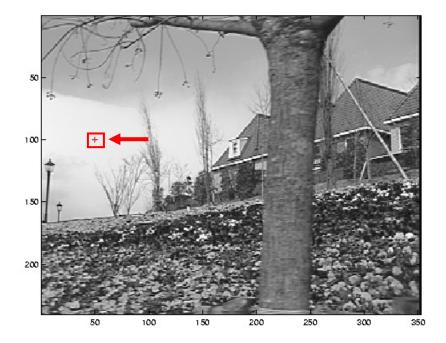


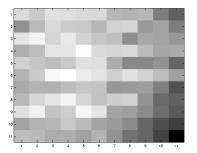
Silvio Savarese & Jeannette Bohg

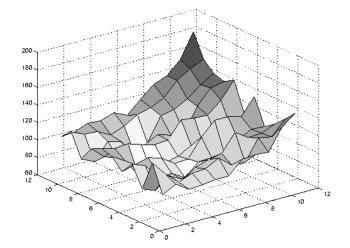
Lecture 12

12-May-24

Image Gradient Examples – Low texture



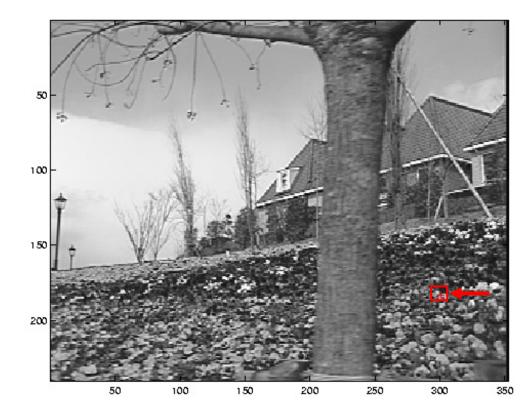


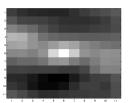


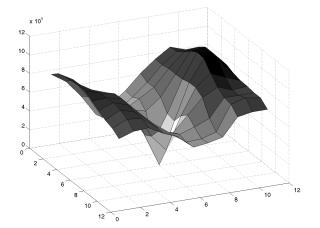
53

Silvio Savarese & Jeannette Bohg

Image Gradient Examples – Low texture







Silvio Savarese & Jeannette Bohg

Lecture 12

54 12-May-24

Deqing Sun, Stefan Roth, and Michael J. Black. "A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them". International Journal of Computer Vision (IJCV), 2013

Bag of tricks

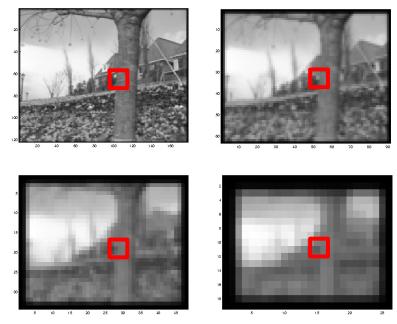
Small motion assumption

Silvio Savarese & Jeannette Bohg

Lecture 12

Bag of tricks

Reduce Resolution



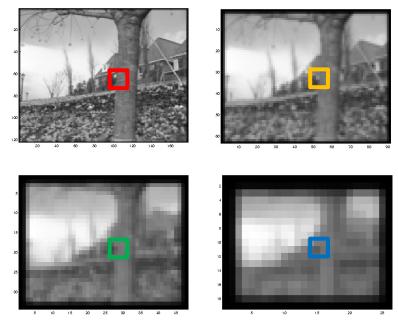
* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Silvio Savarese & Jeannette Bohg

Lecture 12

Bag of tricks

Reduce Resolution

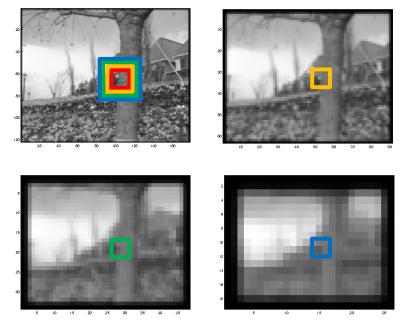


* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Silvio Savarese & Jeannette Bohg

Bag of tricks

Reduce Resolution



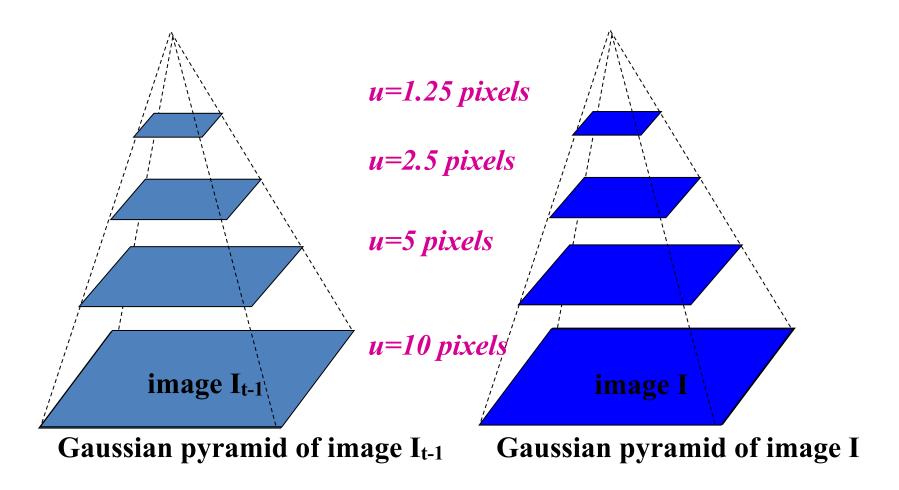
* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

Spatial Pyramides

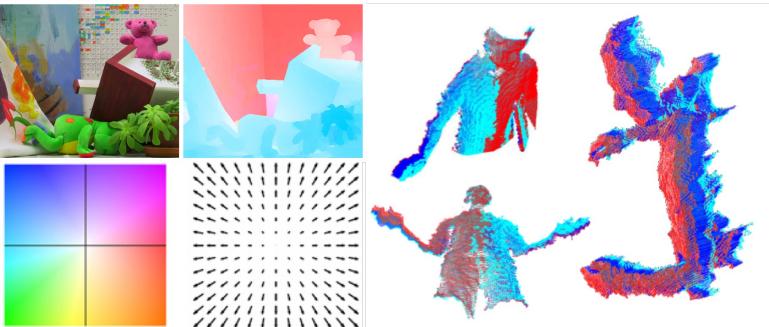


Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

Scene Flow = 3D Optical Flow



A Database and Evaluation Methodology for Optical Flow. Baker et al. IJCV. 2011

A Primal-Dual Framework for Real-Time Dense RGB-D Scene Flow. Jaimez at al. ICRA, 2015.

60

Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

What are the main challenges with this traditional formulation?

- Assumptions
 - Brightness constancy
 - Small motion
 - Etc
- Occlusions
- Large motion

Silvio Savarese & Jeannette Bohg

Learning-based approaches

- Since 2015 FlowNet
- Availability of synthetic data, e.g. Sintel

Silvio Savarese & Jeannette Bohg

Lecture 12

62 12-May-24

FlowNet - Learning Optical Flow with Convolutional Networks

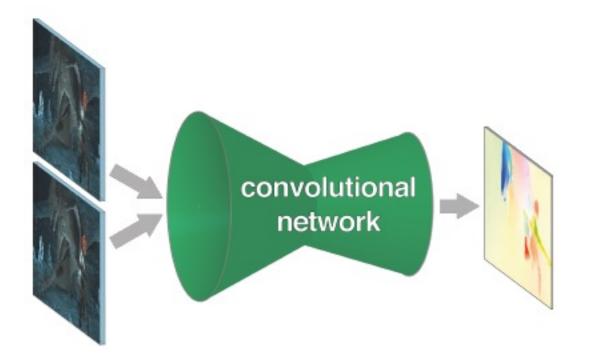


Image Pair

Optical Flow

63

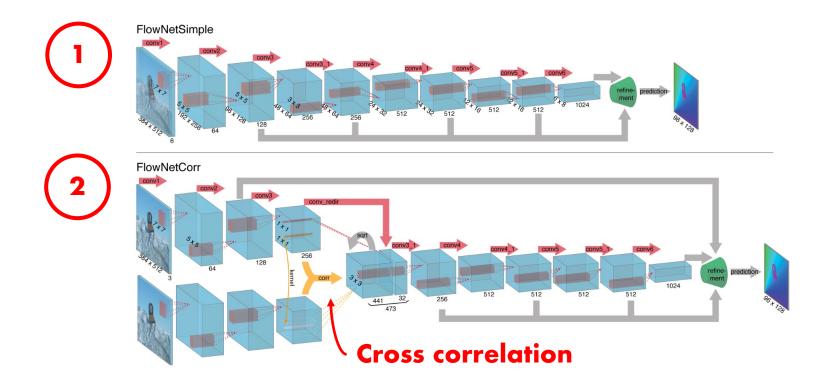
12-May-24

Supervised Learning with Labeled Data Set

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. Smagt, D. Cremers, Thomas Brox. IEEE International Conference on Computer Vision (ICCV), 2015

Silvio Savarese & Jeannette Bohg

FlowNet - Learning Optical Flow with Convolutional Networks



Supervised Learning

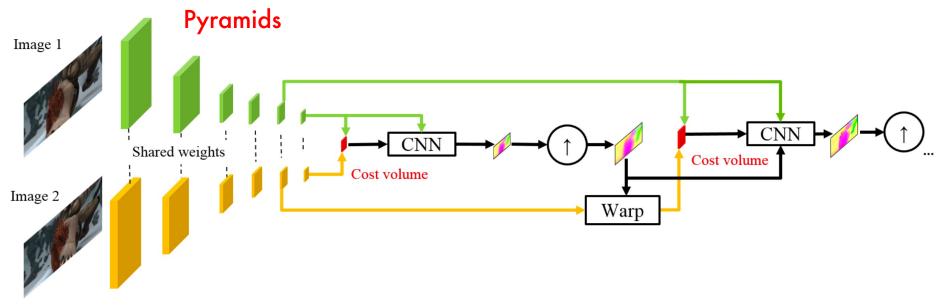
Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

Supervised Optical Flow using traditional principles

Pyramidal Processing, Image Warping & Cost volume processing

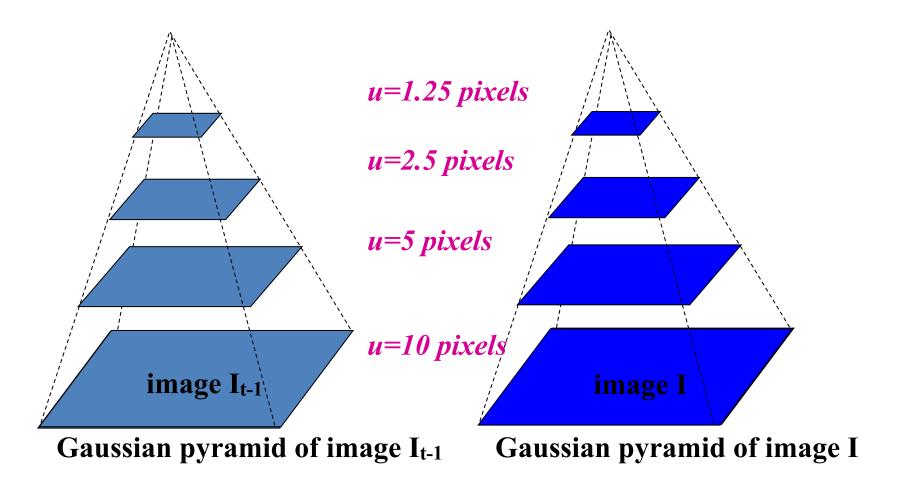


Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume." CVPR 2019

12-May-24

Silvio Savarese & Jeannette Bohg Lecture 12

Spatial Pyramides



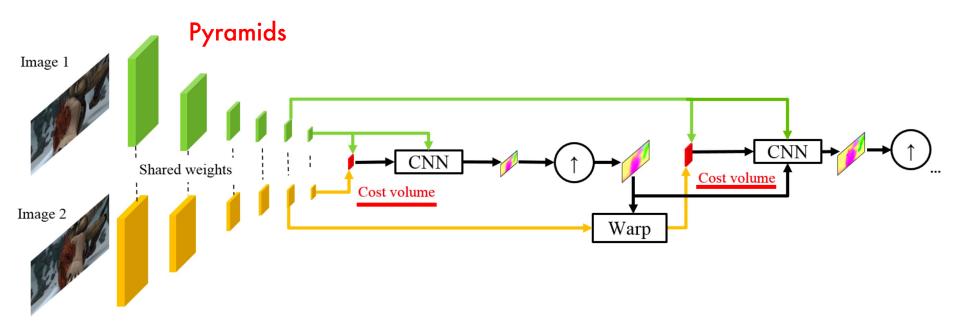
Silvio Savarese & Jeannette Bohg

Lecture 12

12-May-24

Supervised Optical Flow using traditional principles

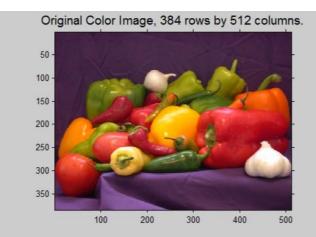
Pyramidal Processing, Image Warping & Cost volume processing



Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume." CVPR 2018

Silvio Savarese & Jeannette Bohg Lecture 12

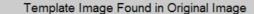
Cost Volume



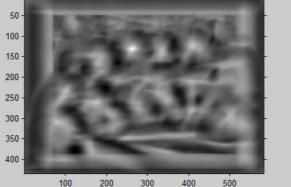
Normalized Cross Correlation Output, 433 rows by 583 columns.

Template Image to Search For, 50 rows by 72 columns.

Template



Cost volume 200

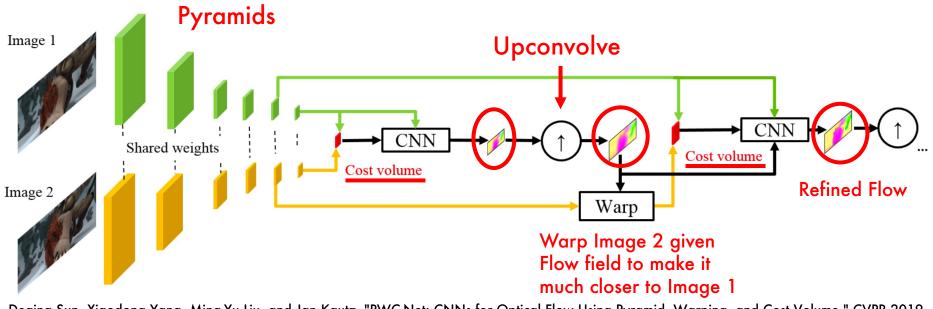


500

Silvio Savarese & Jeannette Bohg

Supervised Optical Flow using traditional principles

Pyramidal Processing, Image Warping & Cost volume processing



Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume." CVPR 2019

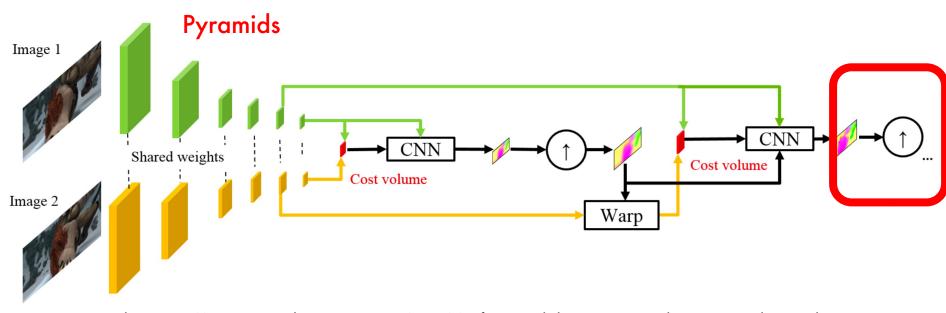
Silvio Savarese & Jeannette Bohg Le

Lecture 12

12-May-24

Supervised Optical Flow using traditional principles

Pyramidal Processing, Image Warping & Cost volume processing



Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume." CVPR 2018

Silvio Savarese & Jeannette Bohg Le

Lecture 12

12-May-24

CS231 Introduction to Computer Vision

Next lecture: Optimal Recursive Estimation

Silvio Savarese & Jeannette Bohg

