
Monocular Depth Estimation and Feature

Tracking

Bryan Chiang and Jeannette Bohg

February 9, 2022

1 Overview

In the previous section, we discussed the idea of representation learning which
leverages unsupervised and self-supervised methods to learn an intermediate,
low-dimensional representation of high-dimensional sensory data. These learned
features can then be used to solve downstream visual inference tasks. Here,
we will examine how representation learning in the context of two common
computer vision problems: monocular depth estimation and feature tracking.

2 Monocular Depth Estimation

2.1 Background

Depth estimation is common computer vision building block that is crucial to
tackling more complex tasks, such as 3D reconstruction and spatial perception
for grasping in robotics or navigation for autonomous vehicles. There are nu-
merous active methods for depth estimation such as structured light stereo and
LIDAR (3D point clouds), but we focus on depth estimation through passive
means here since it does not require specialized, possibly expensive hardware
and can work better in outdoor situations.

We can view depth estimation as a special case of the correspondence
problem, which is fundamental in computer vision. It involves finding the 2D
locations corresponding to the projections of a physical 3D point onto multiple
2D images taken of a 3D scene. The 2D frames can be captured from multiple
viewpoints either using a monocular or a stereo camera.

1

Figure 1: Epipolar geometry setup with a stereo camera.

One way to solve for correspondences is through epipolar geometry, illus-
trated in Figure 1, as we have seen earlier in the course. Recall that given the
camera centers O1 and O2 and a 3D point in the scene called P , p and p′ rep-
resent the projection of P into the image planes for the left and right cameras,
respectively. Given p in the left image, we know that the corresponding point
in the right image p′ must lie somewhere on the epipolar line of the right cam-
era, which we defined as the intersection of the image planes with the epipolar
plane. This is known as the epipolar constraint, which is encapsulated by
the fundamental (or essential) matrix between the two cameras since F gives us
the known epipolar lines. In the context of depth estimation, we often assume
that we are dealing with a stereo setup and rectified images. The epipolar lines
are then horizontal and the disparity is defined as the (horizontal) distance
between the two corresponding points such that d = p′u − pu and pu + d = p′u
(note that p′u > pu for all P).

2

Figure 2: Rectified setup with parallel image planes and epipoles at infinity.

We then see that there is simple inverse relationship between disparity and
depth, which is defined as the z-coordinate of P relative to the camera centers.
We can use similar triangles as illustrated in Figure 3 to obtai z = fb

d , where
f is the focal length of the cameras and b is the length of the baseline between
the two cameras (yellow dashed line in Fig 2). Assuming b and the camera
intrinsics K are known, we see that if we are able to find correspondences
between two rectified images, illustrated in Figure 2, we know their disparity
and thus their depth. One approach to identify correspondences p′ for p is to
run a simple 1D-search along the epipolar line in the other image, using pixel or
patch similarities to determine the location of the most likely p′. However, such
a naive method would run into issues such as occlusions, repetitive patterns,
and homogeneous regions (i.e. lack of texture) on real-world images. We turn
to modern representation learning methods instead.

Figure 3: Relationship between depth and disparity.

3

2.2 Supervised Estimation

Here, we focus on the task of monocular (single-view) depth estimation:
we only have a single image available at test time, and no assumptions about the
scene contents are made. In contrast, stereo (multi-view) depth estimation
methods perform inference with multiple images. Monocular depth estimation
is an underconstrained problem, i.e. geometrically it is impossible to determine
the depth of each pixel in the image. However, humans can estimate depth well
with a single eye by exploiting cues such as perspective, scaling, and appearance
via lighting and occlusion. Therefore, when exploiting these cues, computers
should be able to infer depth with just a single image. Fully supervised learning
methods, illustrated in Figure 4, rely on training models (CNNs) to learn to
predict pixel-wise disparity over pairs of ground truth depth and RGB camera
frames [8, 11]. The training loss captures the similarity between the predicted
and ground-truth depth and the learning method aims to minimize that loss.
Since monocular methods can only capture depth up-to-scale, [1] proposes using
a scale-invariant error to prior monocular methods.

Figure 4: Vanilla supervised learning setup used in [1, 8, 11]. Figure from [3].

2.3 Unsupervised Estimation

While supervised learning methods achieved decent results, they are limited to
scene types where large quantities of ground depth data are available. This
motivates unsupervised learning methods which only require the input RGB
frame data and a stereo camera with known intrinsics, and thereby avoid the
need for expensive labeling efforts. Here, we examine the approach proposed
in [3] as a case study. Instead of using the difference between reconstructed
and ground truth depth as the loss, the base unsupervised formulation casts the
problem as image reconstruction through the use of an autoencoder to minimize
the difference between the input reference image and a reconstructed version Ĩ l.

4

Figure 5: Unsupervised baseline network. The differentiable sampler enables
end-to-end optimization.

The baseline network, shown in Figure 5, only reconstructs the left image
I l. The input to the network is I l, the left frame. A CNN maps the left
frame to an output to dl, the disparity (displacement) values required to warp
the right image Ir into the left image. The disparity values are then used as
an intermediate representation to reconstruct the left image, Ĩ l, by sampling
from the right image. We could sample from the right image as Ĩ l(u, v) =
Ir(u − dl(u, v), v), but dl(u, v) is not necessarily an integer so the pixel at the
exact new location may not exist. To perform end-to-end optimization to train
the network, a fully (sub-) differentiable bilinear sampler [6] is used, illustrated
in Figure ??.

Note that both the left and right images are used to train the network, but
only the left image is required to infer the left-aligned depth at test time. The
network architecture is fully convolutional, consisting of an encoder followed by
a decoder, which outputs multiple disparity maps at doubling spatial scales. For
instance, if the first disparity map is of resolution (Dh, Dw), the second output
disparity map would be of resolution (2Dh, 2Dw).

Going beyond the baseline, [3] propose a novel architecture to reconstruct
both the left and right frames. This is illustrated in Figure 6, and allows for
the introduction of a more complex loss term to improve image quality of the
disparity.

5

Figure 6: Proposed novel unsupervised network setup.

The CNN takes in the input left frame I l and computes the left-aligned
disparity d̃li,j and the right-aligned disparity d̃ri,j . The right-aligned disparity
map contains the horizontal displacement values needed to reconstruct the right
frame from the left frame, and similarly for the left-aligned disparity. Using the
sampler from before, we reconstruct Ĩ l from dl, Ĩr from dr and compute the
loss between both the left and right input images and reconstructed images
(four images in total). The total loss C is the sum of the loss at each scale s,
C =

∑
s Cs.

Cs = αap(C
l
ap + Cr

ap) + αds(C
l
ds + Cr

ds) + αlr(C
l
lr + Cr

lr) (1)

We see that there are three components. Each one has a scaling factor at
the front and left and right variants, so while the following equations describe
the procedure for the left reconstructed image, know that we also compute the
terms in the same manner for the right image, albeit with Ĩr instead of Ĩ l.

The first term, Cap, is the reconstruction loss.

Cl
ap =

1

N

∑
i,j

α
1− SSIM(I lij , Ĩ

l
ij)

2
+ (1− α)∥I lij , Ĩ lij∥ (2)

It iterates through every pixel at location i, j and computes a weighted
combination of 1) the L1 difference between the reconstructed and ground truth
image and 2) the negative Structural Similarity Index (SSIM), which computes
the similarity between two corresponding patches centered at the pixel through
a combination of the patch’s luminance, contrast, and structure. The average
is then taken. In the paper, α = 0.85, indicating that the SSIM is emphasized
more than the L1 difference.

Next, the second term, Cds, is the smoothness loss.

Cl
ds =

1

N

∑
i,j

|∂xdlij |e−∥∂xI
l
ij∥ + |∂ydlij |e−∥∂yI

l
ij∥ (3)

6

We see that the loss again iterates through every pixel x, y and penalizes the
gradients of the disparity map in both x and y directions (∂xd

l
ij , ∂yd

l
ij). This

has the effect of reducing abrupt changes in disparity (high gradients), resulting
in a smoother disparity map. However, we would want high disparities at object
edges when we transition from one object at a specific depth to another object
at a different depth. To account for this, we relax the smoothness penalty if
we detect an edge in the original image: if the image gradient is high, then

e||∂xI
l
ij ||, e||∂yI

l
ij || will be small. Note that we take the L2 of the image gradient,

but the L1 of the disparity map gradients.
Finally, the third term, Clr, is the left-right consistency loss.

Cl
lr =

1

N

∑
i,j

|dlij − drij+dl
ij
| (4)

The intuition here is that the absolute distance between corresponding pixels
in two image planes , i.e. disparity, should be the same whether computed right
to left or left to right. Therefore, we should penalize differences between the
predicted disparities for the left and right images that are outputted from the
network. To achieve this, we iterate through each pixel i, j and calculate the
L1 distance between left-aligned disparity d̃li,j and corresponding right-aligned
disparity dr

i,j+dl
ij
. Note here that we are using the disparities to ”sample” from

the disparity maps, not the images. In the results, the authors demonstrate
that this unsupervised setup outperforms both the baseline and existing state-
of-the-art fully supervised methods.

2.4 Self-Supervised Estimation

Unsupervised methods have been followed by self-supervised learning for depth
estimation; here we review a follow-up paper [4].

Here, the depth estimation problem is framed as novel view synthesis prob-
lem. Given a target image of a scene, the learned pipeline aims to predict what
the scene would look like from another viewpoint. Depth is used as an interme-
diate representation to obtain the novel view, so the depth map can be extracted
from the pipeline at test time for use in other tasks. In the monocular setup, we
rely on monocular video as our supervisory signal: our target image is a color
frame It at time t, and the images from other viewpoints, or the source views,
are the temporally adjacent frames It′ ∈ {It−1, It+1}. Since we are predicting
future and past inputs from the current input, as opposed to reconstructing the
entire original input, this is an example of self-supervised learning.

7

Figure 7: Self-supervised depth estimation pipeline. (a) is the depth network
architecture for extracting the depth map, (b) predicts the pose transformation
from frame to frame, and (c) describes the ambiguity in depth for reprojection
in all frames.

The pipeline is illustrated in Figure 7. First, we obtain the intermediate
depth representation: given the color input It, we run it through a convolution
encoder-decoder architecture to obtain the depth mapDt, as shown in Figure 7a.
In parallel, as shown in Figure 7b, we iterate over the source past and future
frames It′ and compute the relative pose Tt→t′ indicating the transformation
from It to It

′
. Assuming the same camera intrinsics K for all target and source

views, we can obtain our novel views for t − 1, t + 1 through reprojection, as
shown in Figure 7c. Given K and the predicted depth Dt for all pixels, we
can backproject specific 2D image coordinates (u, v) to the 3D point location.
Since we know the relative pose Tt→t′ , we can then project our 3D point in the
image plane of source view It to obtain the 2D coordinates (u′, v′) in the novel
image plane It′ . Since we have the monocular video, the ground truth It′ is
known. Our “synthesized” view for It′ would then be Ĩt′(u

′, v′) = It(u, v). The
image patches between the “synthesized” view, Ĩt′ and the ground truth view,
It′ , image patches should be visually similar, which we measure through the
photometric error, defined as

pe(Ia, Ib) =
α

2
(1− SSIM(Ia, Ib)) + (1− α)∥Ia − Ib∥1 (5)

The photometric error finds the optimal depth map Dt such that the repro-
jection error for every 2D coordinate pe(Ĩt′(u

′, v′), It′(u
′, v′) is minimized. We

then sum up the photometric error for pairs of (t, t′), t′ ∈ {t− 1, t+ 1}.

Lp =
∑
t′

pe(It, It′→t) (6)

Similar to the last paper, the photometric error, Equation 5, is a weighted
combination of the structural similarity index and the L1 difference. In the
results, the authors demonstrate how this self-supervised setup outperform ex-
isting unsupervised and other self-supervised approaches.

8

3 Feature Tracking

4 Motivation

Given a sequence of images, the task of feature tracking involves tracking the
locations of a set of 2D points across all the images, illustrated in Figure ??.
Just like depth estimation, we can view feature tracking as yet another instance
of solving for correspondence problem across an image sequence.

Figure 8: Feature point tracking over time.

Feature tracking can be used to trace the motion of objects in the scene. We
make no assumptions about scene contents or camera motion; the camera may
be moving or stationary, and the scene may contain multiple moving or static
objects.

The challenge in feature tracking lies identifying which feature points we can
efficiently track over frames. The appearance of image features can change dras-
tically over frames due to camera movement (feature completely disappears),
shadows, or occlusion. Small errors can also accumulate as the appearance
model for feature tracking is updated, leading to drift. Our goal is to identify
distinct regions (called features or sometimes keypoints) that we can track eas-
ily and consistently, and then apply simple tracking methods to continually find
these correspondences.

9

Figure 9: Descriptors for feature tracking.

Traditionally, distinct features in images that are easy to track have been
detected and tracked using hand-designed method [5, 10, 9, 12, 7]. Specifically,
these good features then need to be encoded into a so-called descriptor that
lends itself well for fast matching with features in other images, i.e. finding
correspondences. These methods are also sparse, only yielding descriptors for a
subset of pixels in the image. In this section, we will look at how representation
learning can also be used to learn descriptors of image features rather than
hand-designing them.

In Figure 9, D(k) gives a D-dimensional representation of pixel k (often
incorporating neighboring information). Since k, k′ correspond to the same 3D
point, we would expect that they would be visually similar, so their descriptors
should also be the same D(k) = D(k′) even though the images are captured
from different viewpoints. We can then match pixels in different frames based
on the similarity between their descriptors.

5 Learned Dense Descriptors

We examine the method for learning dense descriptors proposed in [2].

10

Figure 10: Representation of dense descriptors.

Given an input color image, we want to learn a mapping f(·) that outputs a
D-dimensional descriptor for every pixel in the color image. ”Dense” here means
that we have a descriptor for every point in the input image, not just a sparse
set. For visualization purposes in Figure 10, the D-dimensional descriptors are
mapped to RGB through dimensionality reduction. In practice, f(·) is a learned
neural network with a convolutional encoder-decoder architecture. The network
is trained on pairs of images of the same object from different views (Ia, Ib) using
a pixel-contrastive loss, which attempts to mirror the “contrast” in pixels by
minimizing the distance for similar descriptors and maximizing the distance for
different descriptors.

Figure 11: Loss for matches. The blue arrow indicates a matching correspon-
dence between the two points at the end of the arrow.

We assume that we are given a list of correspondences (here called matches)
for an image pair. We run the network to compute the descriptors for all
points in the image. For each ground truth match, we calculate the L2 distance
between the descriptors at the two corresponding points. We want to minimize
the distance in descriptor space D(Ia, ua, Ib, ub)

2.

11

Lmatches(Ia, Ib) =
1

Nmatches

∑
Nmatches

D(Ia, ua, Ib, ub)
2 (7)

Figure 12: Loss for non-matches. The blue arrow a pair of non-corresponding
points.

For the contrastive part, we also compute the loss term for non-matches
(pairs of points that do not correspond to each other). Here, we want to maxi-
mize the distance between non-corresponding points (the max operation maxi-
mizes this distance up to M , the maximum distance), given by

Lnon-matches(Ia, Ib) =
1

Nnon-matches

∑
Nnon-matches

max(0,M −D(Ia, ua, Ib, ub)
2)

(8)
Assuming the true correspondence is known for ua, it is easy to find pairs

of non-matches: we can just sample arbitrary points from Ib that are not the
corresponding point. Note that in Figure 12, ub refers to a non-matched point,
while in Figure 7, ub refers to the matched point. The total loss is then the sum
of the two

L(Ia, Ib) = Lmatches(Ia, Ib) + Lnon-matches(Ia, Ib) (9)

The challenge lies in cheaply obtaining ground truth correspondences at
scale with minimal human assistance. To this end, the authors propose using a
robotic setup to perform autonomous and self-supervised data collection.

12

Figure 13: Robotic arm capturing different views and corresponding poses of a
stationary object for training.

A robotic arm is used to capture images of a stationary object at various
poses, illustrated in Figure 13. Since the forward kinematics of this precise
robotic arm are known, we have matched pairs of camera pose and the corre-
sponding view. 3D reconstruction is performed using all views to obtain a 3D
model of the object. Using the camera poses, 3D points, and images, we can
now generate as many ground-truth correspondences as we want. The network
is trained using Equation 9 in combination with several other tricks such as
background randomization, data augmentation, and hard-negative scaling.

13

Figure 14: Cross-object loss. The two images at the bottom correspond to the
distinct cluster in the plot on the right (blue, orange) when using the cross-
object loss.

If we only train on pairs of the same object, the learned descriptors for dif-
ferent objects overlap when they shouldn’t since they correspond to completely
different entities. If we incorporate a cross-object loss (pixels from images of
two different objects are all non-matches), then we see distinct clusters forming
in the descriptor space, as show in Figure 14.

Figure 15: Class-consistent descriptors.

In contrast, we would want objects from the same class of objects to exhibit
similar descriptors although the visual appearance may not be the same. We
see that our network is capable of learning this: while hats have different colors
and designs, their descriptors share the same structure and color.

14

References

[1] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map predic-
tion from a single image using a multi-scale deep network. arXiv preprint
arXiv:1406.2283, 2014.

[2] Peter R Florence, Lucas Manuelli, and Russ Tedrake. Dense object nets:
Learning dense visual object descriptors by and for robotic manipulation.
arXiv preprint arXiv:1806.08756, 2018.

[3] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised
monocular depth estimation with left-right consistency. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
270–279, 2017.

[4] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Bros-
tow. Digging into self-supervised monocular depth estimation. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision,
pages 3828–3838, 2019.

[5] C. Harris and M. Stephens. A combined corner and edge detector. In
Proceedings of the 4th Alvey Vision Conference, pages 147–151, 1988.

[6] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial trans-
former networks. Advances in neural information processing systems,
28:2017–2025, 2015.

[7] David G Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[8] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers,
Alexey Dosovitskiy, and Thomas Brox. A large dataset to train convolu-
tional networks for disparity, optical flow, and scene flow estimation. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016.

[9] K. Mikolajczyk and C. Schmid. A performance evaluation of local descrip-
tors. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(10):1615–1630, 2005.

[10] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest
point detectors. Int. J. Comput. Vision, 60(1):63–86, oct 2004.

[11] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3d: Learning 3d scene
structure from a single still image. IEEE transactions on pattern analysis
and machine intelligence, 31(5):824–840, 2008.

[12] Jianbo Shi and Carlo Tomasi. Good features to track. IEEE Conference
on Computer Vision and Pattern Recognition, pages 593–600, 1994.

15

