
Representations and Representation Learning

Bryan Chiang and Jeannette Bohg

February 7, 2022

1 Overview

1.1 States and Representations

The state of a dynamical system is basically a compressed description and cap-
tures the key aspects of this system. These aspects may be time-varying or fixed
parameters. Consider the system shown in Figure 1: a walking robot moving
along a vertical plane. In this example, the time-varying quantities may con-
sist of information about the robot’s current pose (position and orientation) in
space, joint configuration and velocity. Fixed parameters may be the length of
the robot’s limbs, the weight of each limb or joint friction. Numerous represen-
tations are possible for the system’s state; for instance, we could choose to use
any selection of joint angles, velocities, positions or the pose of the robot. Fur-
thermore, these quantities could be represented in different ways. For example,
orientations of the robot body could be given as Euler angles, in the angle-axis
representation or as a quaternion. Positions could be provided as spatial or po-
lar coordinates. Which representation you choose often depends on the task at
hand. Finally, a state representation could also be learned which we will come
back to later.

The state of a dynamical system is not static and evolves over time. For
the example of the walker, its pose and joint configuration are time-varying.
We denote the state at time t as xt. A common assumption for such dynamical

Figure 1: Walker2D robot from the DeepMind Control Suite [4]

1

Figure 2: Probabilistic Graphical Model of a Markov chain.

Figure 3: Probabilistic Graphical Model of a Hidden Markov Model.

systems is that they possess the Markov property: future states only depend
on the current state, not past states. In other words, state xt+1 is conditionally
independent of past states x1, x2, . . . , xt−1 given the current state xt:

P (xt+1|xt, xt−1, . . . , x2, x1) = P (xt+1|xt). (1)

The Markov property has implications when predicting future state. If this
property holds, future states only depend on the present - not on the past.
Therefore, we can predict the state at the next timestamp given the current state
according to specific dynamics of the system, or f(xt) = xt+1. For instance, if
the state contains the current angular velocity of a joint, we can predict the joint
angle at the next time step. f(·) may be a non-linear function, and we often
assume that the dynamics are constant over time for simplicity. We model such
systems as Markov chains. Figure 2 visualizes the conditional dependence
structure of a Markov chain as a probabilistic graphical model in which the
nodes are the random variables and the edges indicate conditional dependence.

Markov chains model dynamical systems as fully observable, i.e. the state
is known. In practice, the state of a system at time t is often unknown because
it cannot be directly observed. Our job is to estimate the true state from
noisy sensor observations: a process called state estimation. Such systems
are partially observable and can be modelled by hidden Markov models (or
HMMs) since the state is ”hidden”. We assume that the states xt behave as
a Markov process. We also assume that observation zt at time t only depends
on the state xt at that time. In other words, the observation zt is conditionally
independent of all previous states and observations given xt:

P (zt|xt, xt−1, . . . , x2, x1) = P (zt|xt). (2)

This means that the observation model h(·) that predicts the current ob-
servation zt only depends on xt: h(xt) = zt. Let us make this concrete with

2

Figure 4: RGB image observation of a street scene taken from the point of view
of a car from NuScenes [3]. Pedestrians, cars, motorbikes and the ground are
segmented and detected.

a vision example. If we are a self-driving car with the point-of-view shown in
Figure 4, we would want to know the state of all the traffic participants to
avoid any collisions: 3D locations, bounding boxes (size), possibly velocities of
everyone. However, this information is not given to us directly and must be
estimated from the sensor observations captured through for example a pair of
stereo images, RGB frames, or LIDAR data.

In future lectures on optimal estimation, we will account for robot actions
or control inputs in these Markov processes that affect how the state evolves.
Specifically, instead of f(xt) = xt+1, we will have f(xt, ut) = xt+1, where ut is
the control input or action taken by the robot at time t. These could be torque
commands sent to a joint motor that moves the legs of the walker in Figure 1 or
steering and throttle in case of a car. An interesting problem is how to decide the
next best action ut. This is called decision making. Markov chains generalize to
Markov decision processes (MDPs), and hidden Markov models generalize
to partially observable Markov decision processes (POMDPs) that are
used to formalize decision making. If you are interested in that subject, you
should consider taking Decision-Making under Uncertainty (AA228/CS238) at
https://web.stanford.edu/class/aa228/cgi-bin/wp/.

1.2 Generative and Discriminative Approaches

How can we estimate the state from observations? Let us consider the task of
estimating an object’s pose (state x) from an input RGB image (observation
z). A 6D pose refers to both the objects 3D translation and 3D rotation (6

3

Figure 5: PoseCNN [6] is an example of a discriminative model.

parameters total).
We describe two approaches at a high-level and will delve into specifics later

in the course. First, a generative model describes the joint probability dis-
tribution p(z, x) given the observation z and state x. We compute this joint
distribution using Bayes rule with the likelihood p(z|x) (see Eq. 2) and prior
p(x). For our example of object pose estimation, we could sample an object pose
x(i) from p(x). This prior can be as simple as a uniform distribution in space
or more complex and capture likely locations of this object (e.g. cars on roads
rather than on the side of buildings). Given this pose sample, we can use the
observation model to generate the most likely observation h(x(i)) = z(i), i.e. the
2D projection of the object in the sampled pose onto the image plane. p(z|x(i))
then provides a likelihood of the actual observation z given the hypothesized
pose x(i) by comparing the differences between z(i) and z.

Second, a discriminative model describes the conditional probability p(x|z)
of the state x given the observation z. For instance, we could train a neural
network, such as PoseCNN in Figure 5, to directly map an input image z to
the most likely output pose x. To learn more about the differences between
discriminative and generative models, please refer to the CS229 notes at https:
//cs229.stanford.edu/notes-spring2019/cs229-notes2.pdf.

2 Representation Learning

2.1 Representations in Computer Vision

We turn our attention to how the term representations is used in Computer
Vision. Consider the high-level, semantic segmentation pipeline in Figure 6. It
illustrates that data at any stage within that pipeline comes in a specific repre-

4

Figure 6: Visualization of input, intermediate, and output representations in a
high-level computer vision pipeline for semantic segmentation [2].

sentation. We will therefore introduce context to qualify the term representation
more clearly.

On one end of the pipeline, we have raw sensor data captured by some
sensor. The input representation describes the raw sensor data format. In
Figure 6, our input is an observation of a 3D scene within the ocean containing
a fish. Depending on sensor choice, raw sensor data could be represented by 2D
images, depth images, or point clouds. Even within a specific form, there are
subtle differences in the input representation. For instance, color vs. grayscale,
stereo vs. monocular, RGB vs. HSV image color space. On the other end of
the pipeline, the information being inferred from the raw sensor data is pro-
vided in an output representations that succinctly describes the high-level
key aspects of the scene that are necessary for the considered decision-making
task. If we were a biologist and our goal was to count the number of fish we
encounter, the relevant output representation may be the ”Fish” label on the
output side, or even a more specific label indicating the species of the fish.
However, if we were a drone attempting to navigate the coral reef, we may be
more interested in estimating the 6D pose and 3D bounding box of the fish,
which would be useful to incorporate into our trajectory planning. In between
input and output representations is the input data in some intermediate rep-
resentations. This representation is typically a compressed, low-dimensional
vector that summarizes the high-dimensional input sensory data. Intermediate
representations compress the input data provided in the input representation.
The data provided in the intermediate representation is then used to derive a
relevant quantity in the output representations.

Some natural questions at this point are:

1. Since representations are so key for decision-making, what makes for a
good representation? Bengio et al [1] proposed the following requirements
for good representations.

• A representation should be compact , i.e. minimal but yet

• explanatory , i.e. expressive enough (sufficient) to represent and cap-
ture a large number of possible input configurations.

5

Figure 7: Classical CV pipeline for extracting hand-designed intermediate rep-
resentations of the input data [2]. There were typically layers of intermediate
representations where e.g. low-level features like short edges are grouped into
high-level features like parts.

• A representation should be disentangled , i.e. the different explana-
tory factors of the input data variations should be represented inde-
pendently to reflect that these factors can change independently of
each other.

• A representation should also be hierarchical so that more abstract
concepts can be explained in terms of less abstract ones, allowing
feature re-use and increasing computational efficiency.

• Ultimately, this representation should make downstream inference,
prediction or decision-making problems easier. Therefore, the qual-
ity of a representation can also be quantified by downstream perfor-
mance.

2. How do we actually obtain intermediate and output representations? This
will be discussed in the following sections.

2.2 Traditional CV and Interpretable Representations

A high-level visualization of the traditional (≈ pre-2012) computer vision pipeline
is shown in Figure 7. The input data is compressed into an intermediate repre-
sentation which used to be combinations of hand-crafted features extracted from
the input that comes in a specific input representation. The specific choices of
features (descriptors) is flexible and can eb made task specific. For instance, if
we believe that specific stripes or designs on a fish’s body may distinguish it
from other types of fish or things in the sea, then we could exploit those specific
patterns by extracting edges and colors to form our intermediate representation

6

of the raw input data. In the example shown in Figure 7, the representation
of the output is a class label. To infer this class label, the intermediate repre-
sentation is fed into a classifier that can either be learned or is based on more
manually-defined heuristics. As a simple example, I can define a heuristic that
if the histogram of colors in the image contains a high amount of oranges and
whites, we may say that the image is likely to contain a clownfish. Much clas-
sical literature has focused on developing new feature extractors, often based
on image processing and filtering methods. While specific methods are out of
this class’s scope, we provide several references for further reading at the end
of this document. The primary benefit of classical feature extraction methods
is that they result in interpretable representations: because we designed
these methods by hand, we can easily explain why specific output represen-
tations were chosen. This can be especially important for downstream tasks
with high stakes, perhaps in legal or medical domains. However, the downside
is that coming up with these feature extractors is a tedious process, requiring
significant amounts of time and domain expertise that may not be available.

2.3 Modern CV and Learned Representations

Modern computer vision methods (≈ 2012-present) replace manually extracted
features with learned intermediate representations as visualized in Fig-
ure 8. One of the most common model architecture for this purpose are Con-
volutional Neural Networks (CNN) consisting of layers of convolutional filters
applied to images. These filters are learned typically using labeled training
data provided a learned intermediate representation of the input data. The
learned representations turn out to be much more powerful than the previously
hand-designed features in providing the essential information to the subsequent
classifiers.

While learned representations have shown higher accuracy in downstream
tasks such as for example image classification, the downside is that they lack the
interpretability of classical representations. Several methods aim to interpret
learned representations to understand why they perform so well and how to
improve them. Zeiler and Fergus [7] analyzed the specific image patches that
activate filters the most strongly for each layer in a CNN trained on ImageNet.
What they discovered was that the learned representations shown in Figure 9
resembled the traditionally extracted features (such as edges, textures, body
parts shown in Figure 7).

Another approach to understanding learned intermediate representations of
the input data is projecting them to a lower dimensional space so that we can
plot and interpret them. One popular technique for achieving this is tSNE
[5], which performs dimensionality reduction on high-dimensional intermediate
representations by minimizing the KL-divergence of joint probabilities (based
on data similarity) between the low-dimensional embeddings and original high-
dimensional representations. We expect that data points from the same class
will be geographically clustered near each other as visualized in Figure 10. We
can use tSNE to sanity check that our neural network indeed learns that images

7

Figure 8: Learned intermediate representations of input data [2]. Components
of the intermediate feature representations are not manually designed, hence
the blank boxes.

Figure 9: Different levels of learned intermediate representations represent those
of a traditional pipeline from Figure 7.

8

Figure 10: Visualization of tSNE embeddings on the MNIST dataset [2].

with the same label are also visually similar.

2.4 Unsupervised and Self-Supervised Learning

In a traditional supervised learning formulation, we can train a model for a
specific inference task such that it minimizes a loss function (e.g. image clas-
sification accuracy or pose estimation) on a training dataset of D datapoints
{(xi, yi)}D, where xi is the ith datapoint in a given input representation (e.g.
images or 3D point clouds) and yi is the label in the output representation
(e.g. object categories or 6D poses). In practice, data is abundant. However,
labels are expensive to acquire and can require specialized knowledge. Can we
learn meaningful representations from data without labels? Consider the au-
toencoder architecture in Figure 11. The goal of an autoencoder is to learn
to perfectly reconstruct the input image. How well such an encoder is able
to achieve this is measured by the reconstruction loss, which is defined as the
difference between the input data X and the output F(X), both in the same
representation. Here, the intermediate representation z of the input data is a
lower-dimensional vector, and is located at the middle of the network in Fig-
ure 11. Intuitively, we expect that if the second half of the network F is able

9

Figure 11: Autoencoder architecture for unsupervised learning [2]. F is the
autoenconder, X is the input image, X̂ is the reconstructed input image.

to reconstruct the input from z, then z is a useful and informative compressed
version of the input data. For this reason, we say that z is the bottleneck.

We say that an autoencoder performs unsupervised learning since it re-
quires no external labels aside from the input image (which may be viewed as
the label itself). In a similar vein, self-supervised learning masks out part
of the input to use as the output label. For instance, as shown in Figure 12,
we can keep all pixels below the image diagonal as the input, and all the pixels
above the diagonal as the output.

Given the lower portion, the task would be to reconstruct the upper por-
tion of the image. The hope is that the network would still learn meaningful
representations about the input images to achieve this task. This has been em-
pirically shown to some extent in the following manner. Given an autoencoder
trained on a large amount of unlabeled data, we can obtain the compressed
intermediate representation z with the first half of the network (also called the
encoder). Then, with only a small amount of labeled data, we can train a
classifier on top of the intermediate representation z to accurately predict the
output representation since the autoencoder has already done the heavy lifting
of learning a meaningful representation for the input.

References

[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learn-
ing: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell., 35(8):1798–1828, aug 2013.

10

Figure 12: Self-supervised learning setup. The goal is to use the lower triangle
to reconstruct the upper triangle.

[2] Phillip Isola Bill Freeman. Representation learning. http://6.869.csail.
mit.edu/sp21/lectures/L14/14_rep_learning.pdf, 2021. Illustrations
used with permission. Accessed: 2022-01-31.

[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Os-
car Beijbom. nuscenes: A multimodal dataset for autonomous driving. In
CVPR, 2020.

[4] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego
de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew
Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller. Deepmind control
suite. CoRR, abs/1801.00690, 2018.

[5] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(11), 2008.

[6] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox.
Posecnn: A convolutional neural network for 6d object pose estimation in
cluttered scenes. arXiv preprint arXiv:1711.00199, 2017.

[7] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. In European conference on computer vision, pages 818–833.
Springer, 2014.

11

