

Abstract

We present a method to detect and locate dynamic

entities for autonomous vehicles using only stereo- and
mono- computer vision techniques. Our method is a
composition of geometric methods and deep learning. We
attempt to compare our method to conventional
approaches that employ LIDAR-based-detection. We show
that our method produces reasonable object bounding
boxes on entities of interest. Our measurement of runtimes
on cloud platforms shows that our method is a promising
start to extracting dynamic-entity ground-truth at scale.

1. Introduction
Although self driving cars have come a long way as a

result of advancement of technologies, perception
(identification and classification of objects around the
vehicle) is still a key limiter: the vehicle gets a very small
time-quantum within which to sense the environment, fuse
different modalities and present a comprehension
(classification and tracks) to the Planner. Safety is
paramount and Evaluation at-scale is a huge challenge for
the industry. Typical approaches rely heavily on
hand-labeling of object labels and bounding boxes. These
approaches outsource “ground-truth” perception to
humans and therefore are very expensive while being
imperfect. An alternative would be to analyze, offline, the
full recording of all raw sensor data for the entire mission
and to comprehend object labels, bounding boxes and
tracks as ground truth to evaluate in-vehicle-perception
against. Not only are vast amounts of time, compute- and
storage-resources available to crunch the enormous
amount of data (esp. in cloud environments), but such
approaches also have knowledge of “the future” to be able
to reason more accurately about the vehicle environment
at any time.

In this project, we experimented with Computer Vision
techniques for performance of offline 3D detection on
industry-standard datasets. As a first step in this
experimentation, we reproduced the detection and tracking

results in [2], and explored the MEGVII 1 [12] detector
utilized in the paper.

Subsequently, we explored generation of 3D object
bounding boxes (OBB) using only stereo image-pairs and
mono-/stereo- computer vision techniques, instead of
using LIDAR points. LIDAR points are sparse and
accurate. Stereo points are dense and less accurate than
LIDAR.

2. Related Work
Most 3D object detection strategies for self driving cars

can be generally divided into those that use Lidar and
those that use Lidar + Image (RGB).

The Lidar-based 3D detection methods can be further
classified into two categories in terms of point cloud
representations, namely the grid-based methods and the
point-based methods.

The grid-based methods generally transform the
irregular point clouds to regular representations such as
3D voxels or 2D bird-view (BEV) maps, both of which are
efficiently processed by 3D or 2D Convolutional Neural
Networks (CNN) to learn point features for 3D detection.
However, 3D convolution suffers from greater
computational cost and higher latency than 2D
convolutions. Examples of voxel-based methods are
Voxelnet [14], Second [15], Fast point-rcnn [16], and
Part-a2 net [17]. Examples of BEV implementations are
AVOD [19], Pixor [20], HDNet [22], and PointPillars [23].

Point-based methods preserve the point cloud’s spatial
structure and directly extract discriminative features from
raw point clouds for 3D detection. PointNet [26] generates
spatial encodings for each point, which are then
aggregated within grid cells via a symmetrical operation
such as max(). The local point features are further
aggregated into more global features while maintaining
symmetry between points. Many grid-free
implementations use the set abstraction (SA) layers
introduced in PointNet++ [27]. Similar to convolution
layers, SA layers can be stacked to store global features

1 MEGVII, winner of the Lidar Track of the NuScenes 3D
Detection Challenge , applies sparse 3D convolutions on
input LIDAR point-clouds to extract features and generate
detections.

1

https://arxiv.org/abs/2001.05673
https://arxiv.org/abs/1908.09492

into a few adaptively sampled keypoints, which can then
be used as input to other SA layers. However, in general
the SA layers are slower than a CNN backbone. The
PointNet++ architecture infers global structure from local
regions, performs multi-scale feature fusion, and
propagates global information to local points. PointRCNN
[28] utilizes two stages for 3D object detection. It uses
PointNet++ to produce object bounding box proposals.
Frustum ConvNet [29] uses sliding frustums to aggregate
local pointwise features for 3D object detection.
Sparse-To-Dense (STD) [30] improves latency by
voxelizing the features for each of the proposals, yielding
a more compact representation that is efficiently used by
fully-connected (FC) layers in the second stage.

 Generally, the grid-based methods are more
computationally efficient, but the inevitable information
loss degrades the fine-grained localization accuracy, while
the point-based methods have higher computation cost, but
can easily achieve larger receptive fields by the point set
abstraction. With these tradeoffs, a common strategy is to
use a hybrid approach by augmenting the grid-based
backbone with a parallel branch. The current top
performer on KITTI, PV-RCNN [32] is a two stage
detector which uses a CNN to generate region proposals,
while utilizing a parallel grid-free PointNet-based branch
to aggregate features into keypoints. Because features are
accumulated into these adaptively chosen key points,
PV-RCNN preserves both point-cloud structure and
localization information, thereby improving accuracy in
the box refinement stage.

In comparison to Lidar-only methods, the Lidar + RGB
fusion methods improve 3D detection performance,
especially for smaller objects such as pedestrians or at
long range objects located farther than 50 meters where
Lidar data is often sparse. Proposal-based methods
generate object proposals in RGB (e.g. F-Pointnet [25]
which was a pioneering grid-free method) or BEV (e.g
MV3D [18]). ContFuse [21] does BEV dense fusion. It
generates BEV feature maps from RGB features, which
are fused with the Lidar BEV features. Multi-task
Multi-sensor Fusion (MMF) [24] uses Lidar points to fetch
image features.

3. Approach
Our original plan was to use the Probabilistic 3D

Multi-Modal, Multi-Object Tracking for Autonomous
Driving paper [1] as the base implementation to
experiment with. However, we were not able to access the
code as there was still some work in progress. Therefore,
after consulting with the teaching staff, we decided to base
our efforts on an earlier paper Probabilistic 3d multi-object
tracking for autonomous driving [2]. This paper is based
on the nuScenes [3] dataset.

Our goal changed to reproducing this paper’s results
and extending it with our own approach to object detection

using knowledge gained from CS231A. We also switched
to using the popular KITTI [4] dataset.

3A. Reproduced Validation Set Results

The code for the paper Probabilistic 3D Multi-Object
Tracking for Autonomous Driving [2] was made available
to us. The work proposed a novel, online tracking method
that took first place in the NuScenes Tracking Challenge at
NeurIPS 2019. The code describes a full detection and
tracking pipeline, with the detection module making use of
MEGVII[12]’s detection results as input to the novel
tracking method. Using the AMOTA (Average
Multi-Object Tracking Accuracy) metric, we reproduced
the validation set AMOTA results reported in [2] with the
NuScenes dataset metadata (Fig. 1, 2).

Fig. 1 : Validation Set Results Reproduction

Fig. 2 : Original Validation Set Results

3B. Our Approach: Computer-Vision based Detection

Our approach to object detection is shown in Fig. 3. It is
done per-frame for cars, motorcycles, bicycles, buses,
trains and trucks. We first compute per-pixel disparities
from rectified image-pairs using classical (SGBM) or
learning-based (PSMNet) techniques. We then calculate
per-pixel depth and use the inverse of the intrinsic
calibration matrix to compute a “grid” of world-space 3D
points for each (valid) pixel in the camera frame (point
grid). We use the YOLOv5 classifier neural network to
identify objects of interest, in the left image: we use the
resulting bounding boxes to carve out object point-clouds
from the scene point-grid. For each such object

2

https://arxiv.org/pdf/2012.13755.pdf
https://arxiv.org/abs/2001.05673
https://www.nuscenes.org/
http://www.cvlibs.net/datasets/kitti/
https://arxiv.org/abs/2001.05673
https://arxiv.org/abs/2001.05673

point-cloud (multiple per scene), we reject the
ground-plane (based on height) and separate the
foreground from the background using K-means clustering
(K=2), and then run Principal Component Analysis (PCA)
in order to establish a 3D object bounding box (OBB) for
that object-instance. Finally, we reproject these 3D
bounding boxes onto the left-camera image for visual
evaluation.

We detail each step in the following subsections.

3C. Disparity Estimation

We first experimented with OpenCV’s Stereo Global
Block Matching (SGBM) with disparities in the range
[4..192] and a block-size of 5. Larger block-sizes yielded
sparser density for disparity values. The disparity range
was chosen to match the defaults for PSMNet (next).

We also experimented with the Pyramidal Stereo
Matching (neural) net (PSMNet) [10] for per-pixel
disparities using pre-trained weights, using max-disparity
of 192.

Fig. 5 and Fig. 6 show the results from these methods.

3D. Depth Field and Point-Grid Calculation

We computed the per-pixel depth field using the well
known formula from epipolar geometry:

z ij = b ✕ f / d ij
where b is the stereo baseline, f is the focal length of the
left camera, d ij is the disparity at pixel (j , i).

We then calculated the 3D coordinates of each pixel in the
camera frame using another well-known relation:

P ij = K -1 (z ij [j , i , 1] T)
Fig. 7 shows a point grid calculated using PSMNet
disparities.

3E. Object Identification

We used the YOLOv5 [11] CNN detector, with pre-trained
weights, to identify cars, trains, etc. Running it on color
left images yields 2D axis-aligned bounding boxes and
associated confidences for instances of object-classes of
interest. We rejected identifications with confidences less
than 60%. Fig. 8 shows detections on the input color
image. Fig. 9 shows the result superimposed on the
disparity field from SGBM.

3

Fig. 3: Our object-detection pipeline. Yellow box

shows steps performed per identified object.

Fig. 4: Reference left-image for all results to follow

Fig. 5: OpenCV SGBM disparity field

Fig. 6: PSMNet disparity field (faint)

Fig. 7: Point-Grid for scene (car-line visible on left)

3F. Object Extraction and Bounding Box Calculation

We used YOLOv5 bounding boxes to carve out point
clouds for individual objects in the scene (object point
clouds).

To refine the object, we first rejected the ground-plane
points by ignoring all whose y -coordinate > 1.6 m (KITTI
cameras are at 1.65 m height from ground, and y -axis
points towards gravity). Then we discarded background
points after separating from the foreground using K -means
clustering using K =2. We performed the clustering on an
auxiliary dataset of scalar distances of each point from the
camera, and used the resulting indices to separate the
object point-cloud. Fig. 10 shows one such object after all
these steps. We can see that it is well-isolated.

Finally, we ran Principal Component Analysis (PCA)
to identify dominant directions for point-cloud
distribution. By casting all points into the coordinate
frame formed by the center and eigenvectors returned by
PCA, we computed 3D bounding box orientation and
extent.

3G. RANSAC: Attempt at Shape Extraction

We attempted to run RANSAC to extract the plane
surfaces bounding car-volumes with the hope that within
each plane we could fit polygons to the convex hull and
extract a wireframe mesh for the car. But the
object-point-cloud is so noisy that it is only possible to fit
a few planes and many converge to oblique, transverse
cuts across the object as shown in Fig. 10 regardless of the
tolerances we chose. Hence, we abandoned this step.

3H. YOLO vs. Point-cloud Approaches

Another angle of this project we wanted to explore was
how our stereo-based detector approach would fare against
popular LIDAR point-cloud based detectors. We chose the
PV-RCNN detector [32], available in the OpenPCDet
toolbox [33]. The pipeline is described in Fig. 12

Fig. 11: YOLO vs. PCL Approaches Pipeline

4

Fig. 8: YOLOv5 identification of cars (red bounding
boxes)

Fig. 9: YOLOv5 rects superimposed on disparity field

Fig. 10: Point cloud for the left-most car

Fig. 10: RANSAC attempt: one color per plane

Fig. 12: YOLO vs. PCL Approaches Pipeline

We fed our point-grid (Fig. 7) into PV-RCNN, and were
able to generate vehicle detections for some particularly
disparate point-grid frames, though this was mostly the
exception not the norm. Most of the stereo-sourced
point-clouds were noisy and could not compare in
accuracy, field-of-view and consistency to the associated
LIDAR point-cloud (Fig. 13). Ideally, if we want to
quantitatively compare detection performance between the
two clouds in the future, we would need to trim the
LIDAR scans to the field of view and range of the stereo
sourced point-clouds and possibly retrain the detectors.

4. Results and Analysis
For all reasons mentioned in Sec. 3H, we could

generate OBB only using the YOLO+PCA approach. Our
primary means of evaluation was visual inspection.

Fig. 14 shows object bounding boxes (OBB)
reprojected onto the scene.

Figs. 15 and Fig. 16 show that trains and cyclists are

also identified, in addition to cars in previous images.

5

Fig. 13 : Comparison of LIDAR and Stereo point-clouds

Fig. 14: Sample results: OBB placed on car-line on left

Fig. 15: OBB centered on train

Fig. 16: Two cyclists with respective OBB.

3D bounding boxes were roughly centered on objects
of interest. The fit is well-centered and consistent for
farther objects and systematically degenerates as the
object gets closer to the left of the image (smaller distance
and greater azimuth) for both OpenCV and PSMNet. This
is presumably due to noise in either method. It could also
be due to small mismatches in intrinsic calibration,
between the assumed pinhole model and the true camera,
becoming pronounced at the image-periphery. Fig. 17 and
Fig. 18 compare the 3D bounding boxes from
OpenCV-SGBM and PSMNet, respectively. Both fail
differently at the image’s left due to unique noise-sources.

OpenCV is unable to compute disparities for a band of

“max-disparity” pixels on the left of the image as seen in
Fig. 9. Therefore increasing the value of this property
compromises depth calculations for objects on the left.
PSMNet does not have this problem. Due to
rules-of-the-road, few objects appear on the right side and
far enough for YOLOv5 detection to work properly. This
made it difficult to check for behavior on the right side.

While generally centered on, or in the neighborhood of,
objects of interest, our OBB are oblique and not aligned
with the object: the boxes generally slope upwards and
away from ego. This is expected because there is no
constraint to anchor these boxes to the ground plane in
“pure” PCA. Disabling ground-plane-rejection did not
change the quality of the result because very few ground
points are part of the YOLOv5 bounding boxes anyway.

Without foreground-background separation using

K-means clustering (K=2), PCA yielded very loose and
skewed 3D bounding boxes. In most cases, foreground and
background cluster-centers were separated by 5-20 m.

Despite these limitations, the frame-to-frame behavior
of our bounding boxes, in a video sequence, is quite good.

YOLOv5 can recognize many object classes (from
COCO dataset) and its 2D bounding boxes are tight fits.

The accumulation of noise over all steps leads to curvy
object outlines which frustrates RANSAC plane-fitting.

Runtimes for each frame, and for steps therein, are
shown in Table 1. We used two platforms - (1) Macbook
Pro with 2.9 GHz 6-core i9 processor with 32GB RAM
running MacOS 11.1 (Big Sur), and (2) AWS g4dn
instance with 3.1 GHz 4-core Xeon Platinum 8259CL
processor and NVIDIA Tesla T4 GPU with 8GB VRAM.
The Macbook Pro platform used CPU only whereas the
AWS instance made use of GPU as well.

It can be seen that the neural networks consume bulk of
the processing time and that GPUs offer significant
speedup. In cloud environments with powerful GPU and
file-systems, our method is fast enough to provide a viable
foundation for ground-truth calculation at-scale.

5. Possible Extensions
Quantitative comparison with KITTI Object Detection

ground-truth is possible (we ran out of time) but this
would require writing custom code to extract such
information from the dataset (reference code is in
MATLAB and not fully documented).

Future work could explore Hough Transform to see if
points vote at least for the side-plane of cars, addressing a
key limitation of RANSAC. Fusing LIDAR data with
stereo data may lead to crisper and more accurate
geometry in object point clouds. L-shape fitting on
ground-plane-projections [31] could form the basis for
best-fit 3D OBB aligned with ground surface. Overall,
these improvements may provide good object-pose

6

Fig. 17: OBB from OpenCV SGBM disparities

Fig. 18: OBB from PSMNet disparities

Table 1: Median runtimes for frames and steps (s)

 MacPro
PSM

MacPro
SGBM

AWS
PSM

AWS
SGBM

Frame 26.0 1.35 1.2 0.62

Disparity 24.3 0.35 0.97 0.37

Pt. Grid 0.03 0.03 0.02 0.02

YOLOv5 0.93 0.90 0.03 0.06

Carve → OBB 0.017 0.015 0.015 0.013

Misc (eg: IO) 0.72 0.04 0.15 0.16

measurements to feed into state-estimators that use
Extended Kalman Filters or Particle Filters. We were
hoping to reach this point for this project with our PCA
bounding boxes but the learning experience was good.
Bayesian Smooth (for example, Extended Kalman
smoothing) over the full history of object 3D locations
would provide good ground-truth for validation studies.

6. Conclusions
We successfully applied techniques from stereo and

mono computer vision, with a few extensions, to detect
certain objects and mark their locations with 3D bounding
boxes. Our approach is a combination of geometry and
deep-learning. Starting with a rectified stereo image-pair,
we show that it is possible to combine inferred
classification with computed point clouds to carve out
objects of interest and to locate them in 3D. Though our
implementation is per-frame, our technique works
smoothly across frames from a (stereo) video sequence.
Limitations of our method can be overcome through
multi-sensor fusion and more advanced computations. It is
a promising foundation for extracting ground-truth
trajectories for dynamic objects in the environment when
combined with odometry and localization.

7. Contributions
● Shoaib Lari: Reproduced results of the baseline

paper [2], wrote test programs to access the
KITTI dataset, and performed Related Work
research.

● Manoj Rajagopalan: Implementation of dataset
→ OBB pipeline shown in Fig. 3. Generated
result images and performance table. RANSAC.

● Martin Freeman: Reproduced results of the
baseline paper [2], experimented with PV-RCNN
on our stereo point-clouds.

8. Code
Code to reproduce detection and tracking results in [2]

is located at:
 https://github.com/shoaiblari/stereo_based_tracking

Code for our object detection, from input stereo
image-pairs to 3D OBB reprojection and RANSAC is
located at:
https://github.com/manoj-rajagopalan/stanford_cs231a_pr
oject

9. References
[1] H.-k. Chiu, J. Li, R. Ambrus, J. Bohg, “Probabilistic

3D Multi-Modal, Multi-Object Tracking For
Autonomous Driving”. arXiv:2012.13755, 2020

[2] H.-k. Chiu, A. Prioletti, J. Li, J. Bohg, “Probabilistic
3d multi-object tracking for autonomous driving,”
arXiv:2001.05673, 2020.

[3] nuScenes. (2020) Nuscenes. Dataset. Available at
https://www.nuscenes.org/

[4] The KITTI Vision Benchmark Suite. (2020).
Available http://www.cvlibs.net/datasets/kitti/

[5] Pykitti package. Available at
https://pypi.org/project/pykitti/

[6] The KITTI Vision Benchmark Suite Setup. (2020b).
Available at
http://www.cvlibs.net/datasets/kitti/setup.php

[7] Go Photonics FL2-14S3C-C camera setup. Available
https://www.gophotonics.com/products/scientific-indu
strial-cameras/point-grey-research-inc/45-571-fl2-14s
3c-c .

[8] Point Grey Flea 2 Camera. Available at
https://www.surplusgizmos.com/assets/images/flea2-F
W-Datasheet.pdf .

[9] opencv-python package. Available at
https://pypi.org/project/opencv-python/ .

[10] J-R. Chang, Y-S. Chen, “Pyramid Stereo Matching
Network”, CVPR 2018.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi.
“You only look once: Unified, real-time object
detection.” CVPR 2016.
YOLO V5. Available at
https://github.com/ultralytics/yolov5 .

[12] B. Zhu, Z. Jiang, X. Zhou, Z. Li, G. Yu,
"Class-balanced Grouping and Sampling for Point
Cloud 3D Object Detection", WAD CVPR 2019.

[13] S. Song and J. Xiao. “Deep sliding shapes for amodal
3d object detection in RGB-D images”. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition , pages 808–816,
2016.

[14] Y. Zhou and O. Tuzel. Voxelnet: “End-to-end learning
for point cloud based 3d object detection”. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition , pages 4490–4499,
2018.

[15] Y. Yan, Y. Mao, and B. Li. Second: “Sparsely
embedded convolutional detection”. Sensors ,
18(10):3337, 2018.

[16] Y. Chen, S. Liu, X. Shen, and Jiaya Jia. “Fast point
R-CNN”. In Proceedings of the IEEE international
conference on computer vision (ICCV) , 2019.

7

https://arxiv.org/abs/2001.05673
https://arxiv.org/abs/2001.05673
https://github.com/shoaiblari/stereo_based_tracking
https://github.com/manoj-rajagopalan/stanford_cs231a_project
https://github.com/manoj-rajagopalan/stanford_cs231a_project
https://www.nuscenes.org/
http://www.cvlibs.net/datasets/kitti/
https://pypi.org/project/pykitti/
http://www.cvlibs.net/datasets/kitti/setup.php
https://www.gophotonics.com/products/scientific-industrial-cameras/point-grey-research-inc/45-571-fl2-14s3c-c
https://www.gophotonics.com/products/scientific-industrial-cameras/point-grey-research-inc/45-571-fl2-14s3c-c
https://www.gophotonics.com/products/scientific-industrial-cameras/point-grey-research-inc/45-571-fl2-14s3c-c
https://www.surplusgizmos.com/assets/images/flea2-FW-Datasheet.pdf
https://www.surplusgizmos.com/assets/images/flea2-FW-Datasheet.pdf
https://pypi.org/project/opencv-python/
https://github.com/ultralytics/yolov5

[17] S. Shi, Z. Wang, X. Wang, and H. Li. “Part-a2 net: 3d
part-aware and aggregation neural network for object
detection from point cloud”. CoRR , abs/1907.03670,
2019.

[18] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia.
“Multi-view 3d object detection network for
autonomous driving”. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) ,
July 2017.

[19] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S.
Waslander. “Joint 3D proposal generation and object
detection from view aggregation”. IROS , 2018.

[20] B., W. Luo, and R. Urtasun. Pixor: “Realtime 3D
object detection from point clouds”. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition , pages 7652–7660, 2018.

[21] M. Liang, B. Yang, S. Wang, and R. Urtasun. “Deep
continuous fusion for multi-sensor 3D object
detection”. In ECCV , 2018.

[22] B. Yang, M. Liang, and R. Urtasun. Hdnet:
“Exploiting hd maps for 3d object detection”. In 2nd
Conference on Robot Learning (CoRL) , 2018.

[23] A.H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and
O. Beijbom. “Pointpillars: Fast encoders for object
detection from point clouds”. CVPR , 2019.

[24] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun.
“Multi-task multi-sensor fusion for 3D object
detection”. In CVPR , 2019.

[25] C.R. Qi, W. Liu, C. Wu, H. Su, and L.J. Guibas.
“Frustum pointnets for 3d object detection from rgb-d
data”. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) , June 2018.

[26] C.R. Qi, H. Su, K. Mo, and L.J. Guibas. Pointnet:
“Deep learning on point sets for 3d classification and
segmentation”. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition , pages 652–660, 2017.

[27] C. Ruizhongtai Qi, L. Yi, H. Su, and L.J. Guibas.
“Pointnet++: Deep hierarchical feature learning on
point sets in a metric space”. In Advances in Neural
Information Processing Systems , pages 5099–5108,
2017.

[28] S. Shi, X. Wang, and H. Li. Pointrcnn: “3D object
proposal generation and detection from point cloud”.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition , pages 770–779,
2019.

[29] Z. Wang and K. Jia. Frustum convnet: “Sliding
frustums to aggregate local point-wise features for
amodal 3D object detection”. In IROS . IEEE, 2019.

[30] Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia. “STD:
sparse-to-dense 3d object detector for point cloud”.
ICCV , 2019.

[31] S. Qu, G. Chen, C. Ye, F. Lu, F. Wang, Z. Xu, Y. Ge:
“An Efficient L-Shape Fitting Method for Vehicle
Pose Detection with 2D LiDAR”. IEEE ROBIO ,
2018.

[32] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang,
Jianping Shi, Xiaogang Wang, and Hongsheng Li.
“PV-RCNN: Point-Voxel feature set abstraction for 3d
object detection”. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition , 2020

[33] OpenPCDet: LIDAR-based 3D object detection.
Available at
https://github.com/open-mmlab/OpenPCDet

8

https://github.com/open-mmlab/OpenPCDet

