
  

  
Abstract   

  
We  present  a  method  to  detect  and  locate  dynamic           

entities  for  autonomous  vehicles  using  only  stereo-  and          
mono-  computer  vision  techniques.  Our  method  is  a          
composition  of  geometric  methods  and  deep  learning.  We          
attempt  to  compare  our  method  to  conventional         
approaches  that  employ  LIDAR-based-detection.  We  show       
that  our  method  produces  reasonable  object  bounding         
boxes  on  entities  of  interest.  Our  measurement  of  runtimes           
on  cloud  platforms  shows  that  our  method  is  a  promising            
start   to   extracting   dynamic-entity   ground-truth   at   scale.   
  

1. Introduction   
Although  self  driving  cars  have  come  a  long  way  as  a             

result  of  advancement  of  technologies,  perception        
(identification  and  classification  of  objects  around  the         
vehicle)  is  still  a  key  limiter:  the  vehicle  gets  a  very  small              
time-quantum  within  which  to  sense  the  environment,  fuse          
different  modalities  and  present  a  comprehension        
(classification  and  tracks)  to  the  Planner.  Safety  is          
paramount  and  Evaluation  at-scale  is  a  huge  challenge  for           
the  industry.  Typical  approaches  rely  heavily  on         
hand-labeling  of  object  labels  and  bounding  boxes.  These          
approaches  outsource  “ground-truth”  perception  to       
humans  and  therefore  are  very  expensive  while  being          
imperfect.  An  alternative  would  be  to  analyze,  offline,  the           
full  recording  of  all  raw  sensor  data  for  the  entire  mission             
and  to  comprehend  object  labels,  bounding  boxes  and          
tracks  as  ground  truth  to  evaluate  in-vehicle-perception         
against.  Not  only  are  vast  amounts  of  time,  compute-  and            
storage-resources  available  to  crunch  the  enormous        
amount  of  data  (esp.  in  cloud  environments),  but  such           
approaches  also  have  knowledge  of  “the  future”  to  be  able            
to  reason  more  accurately  about  the  vehicle  environment          
at   any   time.   

In  this  project,  we  experimented  with  Computer  Vision          
techniques  for  performance  of  offline  3D  detection  on          
industry-standard  datasets.  As  a  first  step  in  this          
experimentation,  we  reproduced  the  detection  and  tracking         

results  in  [ 2 ],  and  explored  the  MEGVII 1  [ 12 ]  detector           
utilized   in   the   paper.     

Subsequently,  we  explored  generation  of  3D  object         
bounding  boxes  (OBB)  using  only  stereo  image-pairs  and          
mono-/stereo-  computer  vision  techniques,  instead  of        
using  LIDAR  points.  LIDAR  points  are  sparse  and          
accurate.  Stereo  points  are  dense  and  less  accurate  than           
LIDAR.   

2. Related   Work   
Most  3D  object  detection  strategies  for  self  driving  cars           

can  be  generally  divided  into  those  that  use  Lidar  and            
those   that   use    Lidar   +   Image   (RGB).   

The  Lidar-based  3D  detection  methods  can  be  further          
classified  into  two  categories  in  terms  of  point  cloud           
representations,  namely  the  grid-based  methods  and  the         
point-based   methods.   

The  grid-based  methods  generally  transform  the        
irregular  point  clouds  to  regular  representations  such  as          
3D  voxels  or  2D  bird-view  (BEV)  maps,  both  of  which  are             
efficiently  processed  by  3D  or  2D  Convolutional  Neural          
Networks  (CNN)  to  learn  point  features  for  3D  detection.           
However,  3D  convolution  suffers  from  greater        
computational  cost  and  higher  latency  than  2D        
convolutions.  Examples  of  voxel-based  methods  are        
Voxelnet  [14],  Second  [15],  Fast  point-rcnn  [16],  and          
Part-a2  net  [17].  Examples  of  BEV  implementations  are          
AVOD   [19],   Pixor   [20],   HDNet   [22],   and   PointPillars   [23].   

Point-based  methods  preserve  the  point  cloud’s  spatial         
structure  and  directly  extract  discriminative  features  from         
raw  point  clouds  for  3D  detection.  PointNet  [26]  generates          
spatial  encodings  for  each  point,  which  are  then          
aggregated  within  grid  cells  via  a  symmetrical  operation          
such  as  max().  The  local  point  features  are  further           
aggregated  into  more  global  features  while  maintaining         
symmetry  between  points.  Many  grid-free       
implementations  use  the  set  abstraction  (SA)  layers         
introduced  in  PointNet++  [27].  Similar  to  convolution         
layers,  SA  layers  can  be  stacked  to  store  global  features            

1  MEGVII,   winner   of   the   Lidar   Track   of   the    NuScenes   3D   
Detection   Challenge ,     applies   sparse   3D   convolutions   on   
input   LIDAR   point-clouds   to   extract   features   and   generate   
detections.   
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into  a  few  adaptively  sampled  keypoints,  which  can  then           
be  used  as  input  to  other  SA  layers.  However,  in  general             
the  SA  layers  are  slower  than  a  CNN  backbone.  The            
PointNet++  architecture  infers  global  structure  from  local         
regions,  performs  multi-scale  feature  fusion,  and        
propagates  global  information  to  local  points.  PointRCNN         
[28]  utilizes  two  stages  for  3D  object  detection.  It  uses            
PointNet++  to  produce  object  bounding  box  proposals.         
Frustum  ConvNet  [29]  uses  sliding  frustums  to  aggregate          
local  pointwise  features  for  3D  object  detection.         
Sparse-To-Dense  (STD)  [30]  improves  latency  by        
voxelizing  the  features  for  each  of  the  proposals,  yielding           
a  more  compact  representation  that  is  efficiently  used  by           
fully-connected   (FC)   layers   in   the   second   stage.   

 Generally,  the  grid-based  methods  are  more         
computationally  efficient,  but  the  inevitable  information        
loss  degrades  the  fine-grained  localization  accuracy,  while         
the  point-based  methods  have  higher  computation  cost,  but          
can  easily  achieve  larger  receptive  fields  by  the  point  set            
abstraction.  With  these  tradeoffs,  a  common  strategy  is  to           
use  a  hybrid  approach  by  augmenting  the  grid-based          
backbone  with  a  parallel  branch.  The  current  top          
performer  on  KITTI,  PV-RCNN  [32]  is  a  two  stage           
detector  which  uses  a  CNN  to  generate  region  proposals,           
while  utilizing  a  parallel  grid-free  PointNet-based  branch         
to  aggregate  features  into  keypoints.  Because  features  are          
accumulated  into  these  adaptively  chosen  key  points,         
PV-RCNN  preserves  both  point-cloud  structure  and        
localization  information,  thereby  improving  accuracy  in        
the   box   refinement   stage.   

In  comparison  to  Lidar-only  methods,  the  Lidar  +  RGB           
fusion  methods  improve  3D  detection  performance,        
especially  for  smaller  objects  such  as  pedestrians  or  at           
long  range  objects  located  farther  than  50  meters  where           
Lidar  data  is  often  sparse.  Proposal-based  methods         
generate  object  proposals  in  RGB  (e.g.  F-Pointnet  [25]          
which  was  a  pioneering  grid-free  method)  or  BEV  (e.g           
MV3D  [18]).  ContFuse  [21]  does  BEV  dense  fusion.  It           
generates  BEV  feature  maps  from  RGB  features,  which          
are  fused  with  the  Lidar  BEV  features.  Multi-task          
Multi-sensor  Fusion  (MMF)  [24]  uses  Lidar  points  to  fetch           
image   features.   

3. Approach   
Our  original  plan  was  to  use  the  Probabilistic  3D           

Multi-Modal,  Multi-Object  Tracking  for  Autonomous       
Driving  paper  [ 1 ]  as  the  base  implementation  to          
experiment  with.  However,  we  were  not  able  to  access  the            
code  as  there  was  still  some  work  in  progress.  Therefore,            
after  consulting  with  the  teaching  staff,  we  decided  to  base            
our  efforts  on  an  earlier  paper  Probabilistic  3d  multi-object           
tracking  for  autonomous  driving  [ 2 ].  This  paper  is  based           
on   the   nuScenes   [ 3 ]    dataset.   

Our  goal  changed  to  reproducing  this  paper’s  results          
and  extending  it  with  our  own  approach  to  object  detection            

using  knowledge  gained  from  CS231A.  We  also  switched          
to   using   the   popular   KITTI   [ 4 ]   dataset.   

3A.     Reproduced   Validation   Set   Results   

The  code  for  the  paper   Probabilistic  3D  Multi-Object          
Tracking  for  Autonomous  Driving   [ 2 ]  was  made  available          
to  us.  The  work  proposed  a  novel,  online  tracking  method            
that  took  first  place  in  the   NuScenes  Tracking  Challenge   at            
NeurIPS  2019.  The  code  describes  a  full  detection  and           
tracking  pipeline,  with  the  detection  module  making  use  of           
MEGVII[12]’s  detection  results  as  input  to  the  novel          
tracking  method.  Using  the  AMOTA  (Average        
Multi-Object  Tracking  Accuracy)  metric,  we  reproduced        
the  validation  set  AMOTA  results  reported  in  [ 2 ]  with  the            
NuScenes   dataset   metadata   (Fig.   1,   2).     
  

  
Fig.   1 :   Validation   Set   Results   Reproduction   

  

  
Fig.   2 :   Original   Validation   Set   Results   

  

3B.   Our   Approach:   Computer-Vision   based   Detection   

Our  approach  to  object  detection  is  shown  in  Fig.  3.  It  is              
done  per-frame  for  cars,  motorcycles,  bicycles,  buses,         
trains  and  trucks.  We  first  compute  per-pixel  disparities          
from  rectified  image-pairs  using  classical  (SGBM)  or         
learning-based  (PSMNet)  techniques.  We  then  calculate        
per-pixel  depth  and  use  the  inverse  of  the  intrinsic           
calibration  matrix  to  compute  a  “grid”  of  world-space  3D           
points  for  each  (valid)  pixel  in  the  camera  frame  (point            
grid).  We  use  the  YOLOv5  classifier  neural  network  to           
identify  objects  of  interest,  in  the  left  image:  we  use  the             
resulting  bounding  boxes  to  carve  out  object  point-clouds          
from  the  scene  point-grid.  For  each  such  object          
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point-cloud  (multiple  per  scene),  we  reject  the         
ground-plane  (based  on  height)  and  separate  the         
foreground  from  the  background  using  K-means  clustering         
(K=2),  and  then  run  Principal  Component  Analysis  (PCA)          
in  order  to  establish  a  3D  object  bounding  box  (OBB)  for             
that  object-instance.  Finally,  we  reproject  these  3D         
bounding  boxes  onto  the  left-camera  image  for  visual          
evaluation.   

  
We   detail   each   step   in   the   following   subsections.   

3C.     Disparity   Estimation  

We  first  experimented  with  OpenCV’s  Stereo  Global        
Block  Matching  (SGBM)  with  disparities  in  the  range          
[4..192]  and  a  block-size  of  5.  Larger  block-sizes  yielded           
sparser  density  for  disparity  values.  The  disparity  range          
was   chosen   to   match   the   defaults   for   PSMNet   (next).   

We  also  experimented  with  the  Pyramidal  Stereo         
Matching  (neural)  net  (PSMNet)  [10]  for  per-pixel         
disparities  using  pre-trained  weights,  using  max-disparity        
of   192.   

Fig.   5   and   Fig.   6   show   the   results   from   these   methods.   
  

  

  

  

3D.     Depth   Field   and   Point-Grid   Calculation   

We  computed  the  per-pixel  depth  field  using  the  well           
known   formula   from   epipolar   geometry:   

z ij    =   b    ✕    f   /   d ij   
where   b  is  the  stereo  baseline,   f  is  the  focal  length  of  the               
left   camera,    d ij     is   the   disparity   at   pixel   ( j , i ).   
  

We  then  calculated  the  3D  coordinates  of  each  pixel  in  the             
camera   frame   using   another   well-known   relation:   

P ij    =    K -1    (    z ij    [ j ,    i ,   1] T    )   
Fig.   7   shows   a   point   grid   calculated   using   PSMNet   
disparities.   
  

  

3E.     Object   Identification   

We  used  the  YOLOv5  [11]  CNN  detector,  with  pre-trained           
weights,  to  identify  cars,  trains,  etc.  Running  it  on  color            
left  images  yields  2D  axis-aligned  bounding  boxes  and          
associated  confidences  for  instances  of  object-classes  of         
interest.  We  rejected  identifications  with  confidences  less         
than  60%.  Fig.  8  shows  detections  on  the  input  color            
image.  Fig.  9  shows  the  result  superimposed  on  the           
disparity   field   from   SGBM.   
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Fig.   3:     Our   object-detection   pipeline.   Yellow   box   

shows   steps   performed   per   identified   object.   

 
Fig.   4:    Reference   left-image   for   all   results   to   follow   

 
Fig.   5:    OpenCV   SGBM   disparity   field   

 
Fig.   6:    PSMNet   disparity   field   (faint)   

 
Fig.   7:    Point-Grid   for   scene   (car-line   visible   on   left)   



  

  

  

  

3F.   Object   Extraction   and   Bounding   Box   Calculation   

We  used  YOLOv5  bounding  boxes  to  carve  out  point           
clouds  for  individual  objects  in  the  scene  (object  point           
clouds).   

To  refine  the  object,  we  first  rejected  the  ground-plane           
points  by  ignoring  all  whose   y -coordinate  >  1.6  m  (KITTI            
cameras  are  at  1.65  m  height  from  ground,  and   y -axis            
points  towards  gravity).  Then  we  discarded  background         
points  after  separating  from  the  foreground  using   K -means          
clustering  using   K =2.  We  performed  the  clustering  on  an           
auxiliary  dataset  of  scalar  distances  of  each  point  from  the            
camera,  and  used  the  resulting  indices  to  separate  the           
object  point-cloud.  Fig.  10  shows  one  such  object  after  all            
these   steps.   We   can   see   that   it   is   well-isolated.   

Finally,  we  ran  Principal  Component  Analysis  (PCA)         
to  identify  dominant  directions  for  point-cloud        
distribution.  By  casting  all  points  into  the  coordinate          
frame  formed  by  the  center  and  eigenvectors  returned  by          
PCA,  we  computed  3D  bounding  box  orientation  and          
extent.   
    

  

3G.   RANSAC:   Attempt   at   Shape   Extraction   

We  attempted  to  run  RANSAC  to  extract  the  plane           
surfaces  bounding  car-volumes  with  the  hope  that  within          
each  plane  we  could  fit  polygons  to  the  convex  hull  and             
extract  a  wireframe  mesh  for  the  car.  But  the           
object-point-cloud  is  so  noisy  that  it  is  only  possible  to  fit             
a  few  planes  and  many  converge  to  oblique,  transverse           
cuts  across  the  object  as  shown  in  Fig.  10  regardless  of  the              
tolerances   we   chose.   Hence,   we   abandoned   this   step.   
  

  
3H.   YOLO   vs.   Point-cloud   Approaches   
  

Another  angle  of  this  project  we  wanted  to  explore  was            
how  our  stereo-based  detector  approach  would  fare  against          
popular  LIDAR  point-cloud  based  detectors.  We  chose  the          
PV-RCNN  detector  [32],  available  in  the  OpenPCDet         
toolbox   [33].   The   pipeline   is   described   in   Fig.   12   

  

  
Fig.   11:    YOLO   vs.   PCL   Approaches   Pipeline   
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Fig.   8:    YOLOv5   identification   of   cars   (red   bounding   
boxes)   

 
Fig.   9:    YOLOv5   rects   superimposed   on   disparity   field   

  
Fig.   10:    Point   cloud   for   the   left-most   car   

  
Fig.   10:    RANSAC   attempt:   one   color   per   plane   



  

  
Fig.   12:    YOLO   vs.   PCL   Approaches   Pipeline   

  
  

  
  

  
We  fed  our  point-grid  (Fig.  7)  into  PV-RCNN,  and  were            
able  to  generate  vehicle  detections  for  some  particularly          
disparate  point-grid  frames,  though  this  was  mostly  the          
exception  not  the  norm.  Most  of  the  stereo-sourced          
point-clouds  were  noisy  and  could  not  compare  in          
accuracy,  field-of-view  and  consistency  to  the  associated         
LIDAR  point-cloud  (Fig.  13).  Ideally,  if  we  want  to           
quantitatively  compare  detection  performance  between  the       
two  clouds  in  the  future,  we  would  need  to  trim  the             
LIDAR  scans  to  the  field  of  view  and  range  of  the  stereo              
sourced   point-clouds   and   possibly   retrain   the   detectors.   

4. Results   and   Analysis   
For  all  reasons  mentioned  in  Sec.  3H,  we  could           

generate  OBB  only  using  the  YOLO+PCA  approach.  Our          
primary   means   of   evaluation   was   visual   inspection.   

Fig.  14  shows  object  bounding  boxes  (OBB)         
reprojected   onto   the   scene.   

  

  
Figs.  15  and  Fig.  16  show  that  trains  and  cyclists  are             

also   identified,   in   addition   to   cars   in   previous   images.   
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Fig.   13 :   Comparison   of   LIDAR   and   Stereo   point-clouds   

 
Fig.   14:    Sample   results:   OBB   placed   on   car-line   on   left   

 
Fig.   15:    OBB   centered   on   train   

Fig.   16:    Two   cyclists   with   respective   OBB.   



  

3D  bounding  boxes  were  roughly  centered  on  objects          
of  interest.  The  fit  is  well-centered  and  consistent  for           
farther  objects  and  systematically  degenerates  as  the         
object  gets  closer  to  the  left  of  the  image  (smaller  distance             
and  greater  azimuth)  for  both  OpenCV  and  PSMNet.  This           
is  presumably  due  to  noise  in  either  method.  It  could  also             
be  due  to  small  mismatches  in  intrinsic  calibration,          
between  the  assumed  pinhole  model  and  the  true  camera,           
becoming  pronounced  at  the  image-periphery.  Fig.  17  and          
Fig.  18  compare  the  3D  bounding  boxes  from          
OpenCV-SGBM  and  PSMNet,  respectively.  Both  fail        
differently   at   the   image’s   left   due   to   unique   noise-sources.   

  

  

  
OpenCV  is  unable  to  compute  disparities  for  a  band  of            

“max-disparity”  pixels  on  the  left  of  the  image  as  seen  in             
Fig.  9.  Therefore  increasing  the  value  of  this  property           
compromises  depth  calculations  for  objects  on  the  left.          
PSMNet  does  not  have  this  problem.  Due  to          
rules-of-the-road,  few  objects  appear  on  the  right  side  and           
far  enough  for  YOLOv5  detection  to  work  properly.  This           
made   it   difficult   to   check   for   behavior   on   the   right   side.   

While  generally  centered  on,  or  in  the  neighborhood  of,           
objects  of  interest,  our  OBB  are  oblique  and  not  aligned            
with  the  object:  the  boxes  generally  slope  upwards  and           
away  from  ego.  This  is  expected  because  there  is  no            
constraint  to  anchor  these  boxes  to  the  ground  plane  in            
“pure”  PCA.  Disabling  ground-plane-rejection  did  not        
change  the  quality  of  the  result  because  very  few  ground            
points   are   part   of   the   YOLOv5   bounding   boxes   anyway.   

Without  foreground-background  separation  using      

K-means  clustering  (K=2),  PCA  yielded  very  loose  and          
skewed  3D  bounding  boxes.  In  most  cases,  foreground  and           
background   cluster-centers   were   separated   by   5-20   m.   

Despite  these  limitations,  the  frame-to-frame  behavior        
of   our   bounding   boxes,   in   a   video   sequence,   is   quite   good.   

YOLOv5  can  recognize  many  object  classes  (from         
COCO   dataset)   and   its   2D   bounding   boxes   are   tight   fits.   

The  accumulation  of  noise  over  all  steps  leads  to  curvy            
object   outlines   which   frustrates   RANSAC   plane-fitting.   

Runtimes  for  each  frame,  and  for  steps  therein,  are           
shown  in  Table  1.  We  used  two  platforms  -   (1)  Macbook             
Pro  with  2.9  GHz  6-core  i9  processor  with  32GB  RAM            
running  MacOS  11.1  (Big  Sur),  and   (2)  AWS  g4dn           
instance  with  3.1  GHz  4-core  Xeon  Platinum  8259CL          
processor  and  NVIDIA  Tesla  T4  GPU  with  8GB  VRAM.           
The  Macbook  Pro  platform  used  CPU  only  whereas  the           
AWS   instance   made   use   of   GPU   as   well.   
  

  
It  can  be  seen  that  the  neural  networks  consume  bulk  of             
the  processing  time  and  that  GPUs  offer  significant          
speedup.  In  cloud  environments  with  powerful  GPU  and          
file-systems,  our  method  is  fast  enough  to  provide  a  viable            
foundation   for   ground-truth   calculation   at-scale.   

5. Possible   Extensions   
Quantitative  comparison  with  KITTI  Object  Detection        

ground-truth  is  possible  (we  ran  out  of  time)  but  this            
would  require  writing  custom  code  to  extract  such          
information  from  the  dataset  (reference  code  is  in          
MATLAB   and   not   fully   documented).   

Future  work  could  explore  Hough  Transform  to  see  if           
points  vote  at  least  for  the  side-plane  of  cars,  addressing  a             
key  limitation  of  RANSAC.  Fusing  LIDAR  data  with          
stereo  data  may  lead  to  crisper  and  more  accurate           
geometry  in  object  point  clouds.  L-shape  fitting  on          
ground-plane-projections  [31]  could  form  the  basis  for         
best-fit  3D  OBB  aligned  with  ground  surface.  Overall,          
these  improvements  may  provide  good  object-pose        
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Fig.   17:    OBB   from   OpenCV   SGBM   disparities   

 
Fig.   18:    OBB   from   PSMNet   disparities   

Table   1:    Median   runtimes   for   frames   and   steps   (s)   

  MacPro   
PSM   

MacPro   
SGBM   

AWS   
PSM   

AWS     
SGBM   

Frame   26.0   1.35   1.2   0.62   

Disparity   24.3   0.35   0.97   0.37   

Pt.   Grid    0.03   0.03   0.02   0.02   

YOLOv5   0.93   0.90   0.03   0.06   

Carve   →   OBB   0.017   0.015   0.015   0.013   

Misc   (eg:   IO)   0.72   0.04   0.15   0.16   



  

measurements  to  feed  into  state-estimators  that  use         
Extended  Kalman  Filters  or  Particle  Filters.  We  were          
hoping  to  reach  this  point  for  this  project  with  our  PCA             
bounding  boxes  but  the  learning  experience  was  good.          
Bayesian  Smooth  (for  example,  Extended  Kalman        
smoothing)  over  the  full  history  of  object  3D  locations           
would   provide   good   ground-truth   for   validation   studies.   

6. Conclusions   
We  successfully  applied  techniques  from  stereo  and         

mono  computer  vision,  with  a  few  extensions,  to  detect           
certain  objects  and  mark  their  locations  with  3D  bounding           
boxes.  Our  approach  is  a  combination  of  geometry  and           
deep-learning.  Starting  with  a  rectified  stereo  image-pair,         
we  show  that  it  is  possible  to  combine  inferred           
classification  with  computed  point  clouds  to  carve  out          
objects  of  interest  and  to  locate  them  in  3D.  Though  our             
implementation  is  per-frame,  our  technique  works        
smoothly  across  frames  from  a  (stereo)  video  sequence.          
Limitations  of  our  method  can  be  overcome  through          
multi-sensor  fusion  and  more  advanced  computations.  It  is          
a  promising  foundation  for  extracting  ground-truth        
trajectories  for  dynamic  objects  in  the  environment  when          
combined   with   odometry   and   localization.   

7. Contributions   
● Shoaib  Lari:  Reproduced  results  of  the  baseline         

paper   [ 2 ],  wrote  test  programs  to  access  the          
KITTI  dataset,  and  performed  Related  Work        
research.   

● Manoj   Rajagopalan:   Implementation   of   dataset   
→   OBB   pipeline   shown   in   Fig.   3.   Generated   
result   images   and   performance   table.   RANSAC.   

● Martin  Freeman:  Reproduced  results  of  the        
baseline  paper  [2],  experimented  with  PV-RCNN        
on   our   stereo   point-clouds.   

8. Code   
Code  to  reproduce  detection  and  tracking  results  in  [ 2 ]           

is   located   at:   
   https://github.com/shoaiblari/stereo_based_tracking   
  

Code  for  our  object  detection,  from  input  stereo          
image-pairs  to  3D  OBB  reprojection  and  RANSAC  is          
located   at:   
https://github.com/manoj-rajagopalan/stanford_cs231a_pr 
oject   
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