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Abstract

This project studies the 2D/3D reconstruction and clas-
sification based on highly compressed data: quantized lin-
ear gradients. The original image can be perfectly recon-
structed from the full precision linear gradients. 2.25-bit
linear gradients result in less precise reconstruction, but
still contain enough information for simple visual tasks like
classification. Based on the 2D reconstructions, 3D carv-
ing is performed, which can be more accurate than using
the original images. Additionally, tiny convolutional neu-
ral networks are trained on RGBD images using the same
compressing technique. Experiments show that the models
achieve high accuracy in spite of the aggressive compres-
sion, where the depth information contributes a lot. A model
trained on 1.5-bit linear gradients achieves > 93% accu-
racy with only 120 parameters, where the data compression
rate is about 5.33.

1. Introduction
Artificial intelligence has created enormous value, and

therefore it is called the new electricity. Apparently, ma-
chine learning (ML) is one of the most powerful tools and
has transformed many industries, including computer vi-
sion. Mathematically, neural networks use gradient descent
to minimize the fitting loss to the data, while convolutional
neural networks (CNNs) are the most effective and widely
used architectures in vision tasks. Generally speaking, ma-
chine learning is energy-hungry. Take image classification
as an example, theoretically, CNNs can correctly classify
all examples as long as they have “seen” enough images. In
ML classes, we are often told to augment the datasets when
our models perform poorly. This leads to a blind faith in
“big” data. Too much data can also result in other problems
even though there is a possible performance enhancement.

Many CNNs are trained on huge datasets. For exam-
ple, ImageNet takes up ∼ 150 GB and COCO takes up
> 35 GB. In order to fit the nonlinearities of these data,
large networks such as VGG-16 & ResNet-101 [5] are of-

Figure 1. Humans can easily detect the girl and the horse although
the sketching contains much less information than photos.

ten needed. Large data sizes and network sizes consume
tremendous computational resources accompanied by huge
carbon emission. This has also limited the low-end applica-
tions due to the high costs. To solve these issues, many re-
searchers are developing compression techniques [4] or new
network architectures. Compact networks have emerged,
e.g. MobileNets [11], SqueezeNets [6], Once-for-All [2].

Among all the solutions, most of them are about shrink-
ing the model size by either compression or architecture
search. It seems, however, people seldom question about
the data. Is it always better to have more data? In fact, more
data might hurt [1]. This inspires the idea to reduce the data
without hurting the model performance.

Intuitively, we can compare the machine vision to human
perception. A person can classify objects based on very lim-
ited information. For example, we can tell if contours be-
long to people or horses without knowing their skin color
or facial expression. Figure 1 shows another example: it is
easy for us to detect the girl and the horse even though it
contains much less information than a real photo. By this
analogy, we can see that there probably exists much redun-
dancy in the data for simple vision tasks like classification.
What interests me is the possibility to refine the input data
to CNNs.
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Figure 2. Edges of a car and the original photo.

2. Related Work & Approach

Prior works provided some evidences. Histograms of
oriented gradients (HOG) showed excellent precision in hu-
man detection [3]. There were also experiments on aggres-
sively quantized logarithmic-gradients [14]. However, the
authors did not prove the sufficiency of using gradients only.

On the other hand, almost all state-of-the-art CNNs are
trained on single view images, which is not sufficient under
certain circumstances. In view of this, adding depth infor-
mation can help. For instance, LIDAR data, i.e. depth, can
be combined with RGB for pedestrian detection [10, 12].

In this project, I will justify the practicability to establish
computer vision systems on reduced image data. To find
out how much data can be recovered from a highly com-
pressed image, I perform 2D reconstruction using CNNs.
The 2D reconstructions are also utilized for 3D reconstruc-
tion. Additionally, same compression technique is applied
to RGBD data and then used for person-presence detection.
More concretely, this project explores the following points:

(i) 2D image construction based on linear gradients. I
recover the lost information based on just edges as illustrate
by Figure 2. These edges are called ’linear’ gradients (L∇)
in this project, which are extracted by applying a naive fil-
ter. Techniques to reconstruct multi-channel images are also
studied.

(ii) 3D image reconstruction based on linear gradients.
Based on the successful reconstruction of 2D images, 3D
reconstruction is performed, which involves a small abla-
tion of the precision of L∇.

(iii) Classification based on reduced RGBD data. Ex-
periments show that L∇ contain sufficient information for
simple visual tasks like classification. Accordingly, I train
CNNs on these highly compressed datasets. Additionally,
the depth data is used to compensate for the information
loss due to the aggressive compression.

According to my experiments, the compression tech-
nique reserves sufficient information for 2D/3D reconstruc-
tion as well as highly accurate classification. This will yield
more efficient computer vision systems which are friendly

Figure 3. Pixel distribution of (a) grayscale images (b) L∇.

to edge devices.

3. 2D & 3D reconstruction
3.1. Linear gradients (L∇)

Denote an 8-bit image by P ∈ RH×W , where H,W
are the height and width in pixels, Pij ∈ [0, 255]. In this
project, the linear gradients (L∇) of an image, denoted by
G, are computed as follows:

G = P ∗ f where f =

 0 −1 0
−1 0 1
0 1 0

 (1)

Accordingly, Gij ∈ [−255, 255]. For RGB data, the gradi-
ents are computed channel-wise. Grayscale images are em-
ployed in this project to use as little information as possible.
To my understanding, taking L∇ is a kind of normalization;
it redistributes the pixels and always gives a near-normal
distribution, as shown in Figure 3. G is further quantized
to lower precision to reduce the data volume. Denote the
image after quantization by Q.

3.2. Dataset & CNN architecture

Dataset: For the 2D image reconstruction, I use a subset
of PASCAL VOC 2007. Specifically, more than 7 thou-
sand objects of 10 classes from the provided trainval set
are cropped, resized to (96, 96), and converted to grayscale.
They are split into train:val:test = 5171:1108:1109. I also
use other RGB photos for validation, which will be ex-
plained later.

Network architecture: Here I use a naive CNN that only
contains two convolutional layers, as shown in Figure 4.
Tunable parameters include the kernel sizes f1, f2 and the
channel number #c. Note that the second Conv2D only has
1 channel because grayscale images are used. Additionally,
mean squared errors are computed as the loss.

3.3. Evaluation metric & 2D reconstruction

Since we want to minimize the difference between the
output and input images of the CNN, the evaluation metric
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Figure 4. Naive CNN for 2D reconstruction.

Figure 5. Left: grayscale image. Middle: 2.25-bit L∇. Right:
reconstruction.

Figure 6. Channel-wise & block-wise reconstruction.

Figure 7. Left: RGB image. Right: 2.25-bit L∇ reconstruction.

is selected as mean square errors (MSEs). The linear gra-
dients are quantized to 2.25 bits. In other words, for each
pixel Qij in the quantized image, Qij ∈ {−2,−1, 0, 1, 2}.
An example reconstruction based on 2.25-bit L∇ is shown
in Figure 5. Despite the noises, most information in the
original grayscale image is preserved. The image resolu-
tion is (96, 96).

Further, we consider multi-channel images of higher res-
olution, e.g. RGB pictures. Large images are reconstructed
channel-wise and block-wise, and at last stitched together,
as indicated by Figure 6. Figure 7 shows the reconstruc-
tion of an image from PASCAL VOC 2007. Figure 8 dis-
plays examples using different block sizes (the image is
from problem set 3).

3.4. 3D reconstruction

According to 2D reconstruction, a large amount of infor-
mation is preserved in the quantized L∇. Then it should
also give acceptable 3D reconstruction. Here I use the code

Figure 8. Left: RGB image. Middle: 2.25-bit L∇ reconstruction,
small blocks. Right: 2.25-bit L∇ reconstruction, large blocks.

Figure 9. Upper left: use true silhouette. Upper right: use esti-
mated silhouette based on the original RGB image. Lower left:
use estimated silhouette based on full-precision L∇. Lower right:
use estimated silhouette based on 1.5-bit L∇.

for space carving using estimated silhouettes from problem
set 3; I modified the function for better estimation of silhou-
ettes. Figure 9 shows the reconstruction based on the orig-
inal RGB image, full-precision L∇, and 1.5-bit L∇. The
reconstructions based on full-precision L∇ and the RGB
image are comparable: some parts are noisier, some parts
are less noisy. For 1.5-bit L∇, the reconstruction is not suc-
cessful because of the aggressive quantization.

3.5. Discussion

To sum up, most information is reserved in aggressively
quantized images, which is sufficient for simple visual tasks
like classification. There are certainly information loss as
implied by the stripes in the reconstructions. Theoretically,
the loss results from the removal of absolute values of pix-
els. For example, J1 and J2 have the same linear gradient.
Quantization also leads to loss. For future work, it would be
interesting to remove the stripes/edges of the tiles. An intu-
itive solution is to also save one horizontal and one vertical
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Figure 10. Upper left: grayscale image. Upper right: 1.5-bit L∇
of the grayscale image. Lower left: depth image. Lower right:
1.5-bit L∇ of the depth image.

Figure 11. A simple CNN with random projection.

Label:Class 0: ‘background’ 1: ‘person’ Total
# of examples 1449 723 2172

Table 1. Person presence dataset.

edges of each image.

J1 =

0 1 0
1 0 2
0 2 0

 J2 =

 0 254 0
254 0 255
0 255 0


In terms of 3D reconstruction, the full-precision L∇ are

quite noise-resistant. With improved 2D reconstructions,
it is possible to get better 3D reconstructions as shown in
Figure 9.

4. L∇-based RGBD image classification
As introduced in course lectures, single view can cause

problems, especially for highly compressed data, e.g. 1.5-
bit linear gradients in my case. However, if depth infor-
mation is available, the problems may be solvable. Next, I
will work on RGBD datasets and provide a solution to low-
power devices based on L∇.

4.1. Dataset & CNN architecture

Dataset: I build my own dataset based on NYU depth v2
and RGBD people’s dataset [9, 13, 8]. As shown in Table
1, 2172 images of two classes, ‘background’ and ‘person’,
are converted to grayscale and concatenated with the depth
image for classification. In other words, each image has
2 channels of data, one from the grayscale and the other
from the depth image. These images are further split into
train:val:test = 1520:326:326. Similarly, compute and quan-
tize the linear gradients of the grayscale and depth images;
examples are shown in Figure 10.

Network architecture: It turns out that a simple CNN
suffices for this task. Figure 11 shows the CNN architecture,
which incorporates random projection to further reduce the
model size [7].

4.2. Evaluation metric & experiments

This is a classification problem; therefore, the cross en-
tropy loss is used and accuracy is computed for evaluation.
To prove that the depth information is helpful and it can also
be compressed, I tested 6 cases as grouped below. Here, 8-
bit corresponds to full-precision.

4.2.1 8-bit grayscale + 8-bit depth vs. 8-bit grayscale

In this case, both the grayscale images and the depth images
are full-precision, i.e. 8-bit. As shown in Figure 12(a), the
depth information can largely improve the accuracy when
the model is small. As the number of parameters increases,
the gap narrows down.

4.2.2 8-bit L∇ of grayscale + 8-bit L∇ of depth vs. 8-
bit L∇ of grayscale

Now compare the results of full-precision linear gradients.
Same as before, the accuracy is higher with an extra chan-
nel of depth, and the gap in between is smaller with more
parameters, as displayed in Figure 12(b).

4.2.3 1.5-bit L∇ of grayscale + 1.5-bit L∇ of depth vs.
1.5-bit L∇ of grayscale

Figure 12(c) compares the models trained on 1.5-bit L∇.
Again, the depth images can significantly improve the accu-
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Figure 12. The accuracy with and without the depth information
(a) Section 4.2.1 (b) Section 4.2.2 (c) Section 4.2.3.

racy when the models are small. Note that the gap between
two curves is narrower than the previous two cases.

4.3. Discussion

All 3 test groups show that the depth information can
effectively improve the accuracy, where the improvements
are more significant for smaller models, e.g. > 15%. As
displayed in Figure 13, 8-bit L∇ yield more accurate mod-
els compare with 8-bit raw data, which can be explained by
the normalization mentioned in Section 3.1. In view of this
as well as the 2D/3D reconstruction, it is highly possible
that linear gradients will show great performance in other
applications.

With the depth information, the models trained 1.5-bit on
L∇ data have quite high accuracy even with a small number
of parameters, e.g. 120. In terms of data size, the compres-
sion rate for a single pixel is 5.33. For all 2172 images of
resolution (96, 96), we need 40 MB for the unprocessed raw
data, but only 7.5 MB for 1.5-bit L∇, which is a significant

reduction for edge devices. Besides, the reduction will re-
sult in faster inference. (1.5-bit L∇ are sparse matrices that
can be saved more efficiently in memory.) Also note that
the dataset is small in this project; for larger datasets, the
saving will be considerable.

5. Conclusion & Future Work
This project proposes an effective compression tech-

nique for images: quantized linear gradients, which shows
excellent performance for both 2D/3D reconstruction and
classification. For the 2D reconstruction, the original im-
age can be perfectly reconstructed from the full precision
linear gradients; 2.25-bit linear gradients result in less pre-
cise reconstruction, but still contain enough information for
simple visual tasks like classification. Based on the 2D re-
constructions, 3D carving is performed, which can be more
accurate than using the original images. Additionally, tiny
convolutional neural networks are trained on RGBD images
using the same compressing technique, where the data com-
pression rate is about 5.33. For example, 40 MB data can
be effectively reduced to 7.5 MB. Experiments show that
the models achieve high accuracy in spite of the aggressive
compression, where the depth information contributes a lot.
A model trained on 1.5-bit linear gradients achieves > 93%
accuracy with only 120 parameters.

In the future, it would be interesting to explore the fol-
lowing points. (i) Improve the 2D reconstruction by remov-
ing the stripes/edges of tiles. (ii) Try more 3D construction
cases. (iii) Train the CNNs on more challenging datasets,
e.g. more examples, more classes.

References
[1] Deep double descent. https://openai.com/blog/deep-double-

descent/.
[2] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-all:

Train one network and specialize it for efficient deployment,
2020.

[3] N. Dalal and B. Triggs. Histograms of oriented gradi-
ents for human detection. In 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 886–893 vol. 1, 2005.

[4] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quanti-
zation and huffman coding, 2016.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015.

[6] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and ¡0.5mb model size, 2016.

[7] Q. Lu. Random projection in convolutional neural networks:
Face recognition and video classification. Stanford EE270
Project, 2021.

[8] M. Luber, L. Spinello, and K. O. Arras. People tracking
in rgb-d data with on-line boosted target models. In 2011

5



Figure 13. The accuracy with and without the depth information for all 3 test groups.

IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3844–3849, 2011.

[9] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV, 2012.

[10] C. Premebida, J. Carreira, J. Batista, and U. Nunes. Pedes-
trian detection combining rgb and dense lidar data. In 2014
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4112–4117, 2014.

[11] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen. Mobilenetv2: Inverted residuals and linear bottle-
necks, 2019.

[12] L. Spinello and K. O. Arras. People detection in rgb-d data.
In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3838–3843, 2011.

[13] L. Spinello and K. O. Arras. People detection in rgb-d data.
In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3838–3843, 2011.

[14] C. Young, A. Omid-Zohoor, P. Lajevardi, and B. Murmann.
A data-compressive 1.5/2.75-bit log-gradient qvga image
sensor with multi-scale readout for always-on object detec-
tion. IEEE Journal of Solid-State Circuits, 54(11):2932–
2946, 2019.

This is the final report of CS231A project, March 2021.

6


