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Abstract

Nasiolabial cleft lip surgery is a procedure in
which a surgeon reconstructs a patient’s face to
restore oral and nasal functionality in patients.
This procedure requires annotation of points on
the patient’s face corresponding to where the face
will be reconstructed. Through depth mappings
of the patient’s face on a computer, we attempt
to assist surgeons in identifying these annota-
tion points and projecting them onto the patient
without topological deformity; that is, we aim
to project the annotation points on the face af-
ter doing a depth mapping of the patient’s face.
Our aim was to do this with as little sophisti-
cated equipment as possible; our approach there-
fore utilized active stereo with a consumer grade
projector and webcam setup alongside structured
light projections to calibrate the camera and pro-
jector with each other and then perform a depth
mapping of the scene. We also aimed to utilize no
deep neural networks to produce the reconstruc-
tions as quickly as possible at the risk of losing
a bit of accuracy, while still aiming to maintain
as much granularity and accuracy in the scans as
possible.

1. Introduction
Cleft lip/palate is a common birth defect in

many children that restricts their oral and nasal
functionality. The generally prescribed approach
to fixing the cleft is surgical. Through the opera-

tion, a surgeon will annotate several points on the
patient’s face where the reconstruction will take
place; however, this is a time-consuming, labori-
ous process that requires great effort on the part
of the surgeon. Through previous work, we have
constructed a neural network that will identify an-
notation points on the patient’s face. We therefore
aim to produce a depth mapping of the patient’s
face to be projected during surgery in conjunction
with the identified annotation points to assist the
surgeon. Previous work was able to project the
annotation points onto an image of the patient’s
face, but the annotation points became deformed
when being projected onto the patient’s face in
three dimensions. With accurate depth mappings
from a scan of the patient’s face, we can elimi-
nate these deformities and make the annotations
correspond to the contours of the patient’s face.

1.1. Considered Approaches

In order to perform this procedure, we con-
sidered various approaches to scene reconstruc-
tion and depth mapping, namely stereo vision, ac-
tive stereo vision, and using a RealSense3D cam-
era, while operating within the constraint of us-
ing as little hardware as possible and no neural
networks. Ultimately, we settled on using ac-
tive stereo as this involved the least hardware:
we would only need our computer in conjunction
with one consumer grade webcam and one con-
sumer grade projector, in contrast with stereo vi-
sion which would involve two webcams as well as
a projector. We decided to use the RealSense3D
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camera as an oracle as it represents state-of-the-
art self-contained depth estimation as a camera.

1.2. Hardware and Scene Setup

In order to use this approach, we needed a pro-
jector and a camera, both of which were pur-
chased on Amazon for less than $100 combined.
We also purchased a mannequin head for our
scene reconstruction as this most closely mirrored
the depth mapping we would be performing on
patients for cleft lip surgery.

1.3. Camera/Projector Calibration

In order to produce depth mappings for scene
reconstructions from active stereo, we first needed
to determine the intrinsic and extrinsic parame-
ters of the camera and the projector, which we
did through structured light. We printed out a
checkerboard recommended by one of the GitHub
libraries we referenced to calibrate the system.

2. Related Works

We referenced several outside papers as well
as GitHub repositories that implemented the ideas
from these papers. We will discuss the pa-
pers themselves in this section, and links to the
GitHub repositories utilized for our project can be
found in the README for our GitHub library at
https://github.com/eldrickm/cs231a project.

2.1. Structured Light for Stereo Vision

In order to implement structured light for stereo
vision, we can use local homographies[2] to con-
struct transformation matrices between the pro-
jector and the camera. It analyzes the position-
ing of corners across a checkerboard to determine
how the positioning of a checkerboard is changed
with respect to rotation and translation, and then
further utilizes this information to provide us with
the transformation matrices between the camera
and the projector.

Figure 1. Camera and Projector Setup

2.2. Active Stereo Depth Mappings

Next, to perform our scanning, we utilized ray-
plane triangulation[3] similar to the approach we
used in problem set 2 to construct a depth map
from various patterns projected onto the scene.
These include various structured light patterns[1],
including a single vertical bar that moves across
the scene followed by a single horizontal bar that
moves along the scene, sequential graycodes, bi-
nary codes, or XOR codes.

3. Approach
As mentioned above, our system involved uti-

lizing both structured light to calibrate our sys-
tem and active stereo to construct depth mappings
once the system was calibrated.

3.1. Calibration

To calibrate the system, we projected increas-
ingly fine-grain horizontal and vertical graycode
patterns onto a checkerboard and took pictures of
the projected patterns on the checkerboard with



the webcam. This process produced about 40 im-
ages (20 horizontal, 20 vertical) that were used to
construct the intrinsic and extrinsic parameters of
the camera and the projector. This proved to be by
far the most difficult aspect of our project; in ad-
dition to retrofitting the code we found on the ref-
erenced GitHub repository to project and capture
images based on our hardware setup, we found
that the code was exceedingly particular about
which images were acceptable to construct the pa-
rameters. It took several days of tinkering with
various surrounding light settings (turning off all
the lights in the room, adjusting the checkerboard
so the black squares were not reflecting back at
the camera, providing buffers between image cap-
tures to allow different patterns to be captured for
each image) for us to get our initial parameter ma-
trices. We believe a next step could be to iterate
on top of the open source code provided by CV2
to make these image captures more robust; this
would make it easier for future users to calibrate
their systems without as much trouble as we had
with the calibration system.

Even once we had a setup that provided us with
calibration matrices, it was no guarantee that it
would work again; from the point that we first cal-
ibrated the system, recalibrating it with the same
approach worked around 50% of the time. It is
worth noting, however, that the times we were
able to recalibrate the system the parameter matri-
ces were very accurate and provided good results,
as will be seen in the Results section.

3.2. Active Stereo

Once we had calibrated the system, we
retrofitted another referenced GitHub library to
scan a scene for reconstruction. This involved
scanning with a vertical bar horizontally across
a screen and similarly vertically with a horizon-
tal bar across the scene, after which the cam-
era would take the captured images and recon-
struct the scene based on the computed calibra-
tion matrices. After spending much of our time
attempting to calibrate the system, we utilized the

Figure 2. Binary-coded projection onto checkerboard

most straightforward, out-of-the-box implemen-
tation of depth reconstruction to compare with
our baseline RealSense3D depth mapping. Given
more time, we would have utilized more of the
implementations for depth mapping provided by
the GitHub library which we believe would im-
prove both efficiency and granularity of scene re-
construction, but unfortunately due to the amount
of effort spent calibrating the scene we were not
able to pursue these avenues further.

4. Experiments

To perform our experiments, we first set up the
checkerboard on which to project structured light
patterns as depicted below. This gave us our cam-
era and projector matrices. We then adjusted the
scene to put various objects in it for scanning and
scene reconstruction; the scene setup, again, is
depicted below. We used various objects in the
scene to see how the depth mapping would adjust
to some items being closer and some being far-
ther, some being less detailed (a human forehead)
and some being more detailed (a phone cord coil).

Though we tested objects of varying depth and
detail, ultimately we were mainly focused on the
reconstruction of the human face given its rela-
tion to the cleft lip and cleft palate surgeries dis-
cussed in the introduction, so we focused mainly
on the facial reconstructions for the depth recon-
structions to see how accurately we could repro-
duce facial features.



Figure 3. The scene setup

5. Results
Once we were able to calibrate the system, our

results were quite successful- the depth mappings
of the scene were very accurate and since we get
RGB channels for free in depth mapping, we were
able to reconstruct color versions of the scene to
a high degree of accuracy. When comparing with
the RealSense3D camera for the depth mapping,
we had less granularity but the depressions, pro-
trusions and gradients of the facial features were
effectively the same- the eyes, mouth, and nose
were all visible with a fair degree of detail, which
was far better than what we were expecting after
our initial struggles with calibrating the system.

One piece to note that our system improves
over the RealSense3D camera is that it does not
require a minimum depth; the RealSense requires
the user to be some minimum distance away from
the scene for the depth mapping before it begins
to lose quality, whereas our system has no such
requirements. Additionally, our system imple-
mented the most naive scanner which gave a very
rough granularity, so to have the level of detail
we had even with this limitation was encouraging.
Our gradient depth map measured against the Re-
alSense3D gradient depth map is pictured above.

5.1. Limitations

One limitation of our system was that the depth
from the projector’s perspective can obviously not

Figure 4. Our Depth Mapping

Figure 5. RealSense3D Depth Mapping

be estimated as the points were occluded. The
right side of the human face is where the depth
estimation starts to falter and then fall off com-
pletely into the white points pictured behind the
head, which is where the camera had visibility
but the projector did not. Similarly, if we were to
look at the scene from the projector’s perspective,
we would see no depth estimation to the left of
the mannequin head as those points are occluded
from the camera. This is due to the translation
between the camera and the projector; the Re-
alSense camera is a self-contained unit, so there
are minimal points of occlusion between the two
perspectives used to estimate depth.

Additionally, because we utilized the most
naive version of the scanning code to construct
our depth map from the scene, our resolution was
not quite up to the resolution of the RealSense3D



camera. However, as we will discuss in the future
work section, there are other methods of perform-
ing the scan that will be far more efficient both
time-wise and space-wise of scanning the scene,
which would allow us to obtain much finer gran-
ularity scanning of the scene for the depth recon-
struction.

5.2. RGB Scans

Ultimately, we felt our implementation was
successful as it was extremely close to the scene
we were reconstructing, the aforementioned lim-
itations notwithstanding. Pictured below are two
of the RGB scans we performed, one of just the
mannequin head in front of a cardboard back-
ground and the other containing a telephone to
provide more objects for the scan to analyze. As
we can see, the reconstructed image looks ex-
tremely similar to the original scene, albeit less
well-defined because of the process described
above. We can clearly see the lips, eyes, and nose
of the face are very well-defined in both of the
scans shown, and we can see that the depth is pre-
served by the point clouds so if we were to project
these scans back onto the patient’s face, it would
not be distorted by the contours of the patient’s
face like it would be if we were just to scan a 2D
image.

Although as mentioned above we do lose some
detail around the patient’s ears, this is less im-
portant for our purposes of annotating the points
where the cleft lip and cleft palate surgeries will
take place because these are only on the patient’s
mouth and nose. If we were to perform more
scans we could construct a more robust depth map
of the entirety of the patient’s head, but it would
be unnecessary for our stated purpose.

6. Conclusion
We think through our work we implemented a

system capable of producing the results we de-
sired and with some more work we believe we
could reproject the point clouds onto a patient’s
face to help surgeons with the annotation points.

Figure 6. First Scene Setup

Figure 7. First Scene Scan

As mentioned above, there are a couple different
avenues to move from here to improve the speed
and granularity of the reconstructions. First, the
naive scanner for the depth map is very slow
and not spatially efficient, but for our purposes
it worked well because it was easy to debug. In
the future, projecting graycodes, binary codes,
or XOR patterns onto the scene would be far
more time and space efficient implementations as
a means of getting the scene to reconstruct. The
resulting spatial efficiency would allow us to store
more granular images, which would lead to in-
creased resolution in the final product- see the ta-
ble included below for the differences in projected
resolution (our solution would be on the order of
30 times as fine a resolution as the RealSense3D
camera, which as it exists now is about 15 times
as fine a resolution as our naive scanner).

Another avenue would be to use colored pat-



Figure 8. Second Scene Setup

Figure 9. Second Scene Scan

terns for reconstruction, as this would allow us to
do one-shot reconstruction. This is advantageous
for numerous reasons, chief of which would be
that the patient is not necessarily stationary dur-
ing the scanning. Our naive scanner requires the
scene to be stationary for around 10 seconds be-
fore the scan is complete, whereas a colored pat-
tern projection would be far quicker and would
only require a single picture of the scene for the
reconstruction. Additionally, this would be far

Figure 10. Second Scene Scan

more spatially efficient than the scanner imple-
mentation as it would only require a single image.

Finally, we could explore using a basic Face
Detector in our scans to reject the background of
the scene and focus on the face of the patient,
which would lead to even greater granularity and
resolution in the scan of the face. The Face Detec-
tor would give a window of reference to the scan-
ner, which would focus accordingly on different
aspects of the scene to give the best possible re-
sulting depth map.
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