

 1

Abstract

An accurate and fast fruit detection system is a key

element of autonomous agricultural robotic platforms. The

citrus harvesting task is particularly challenging due to

illumination, noisy background and occlusions created by

citrus canopies. In this study, we explore the possibilities

and limitations in deploying the Neural Radiance Fields

technique for fruit representation on citrus trees. A

simplified model representing scenes as Neural Radiance

Fields for view synthesis was implemented in a series of

experiments focusing on how object type, neural network

depth, image resolution, dataset size and ray sample

resolution affected final 3D object rendering. This

simplified model only requires RGB images, Camera-to-

World matrices and focal length as inputs and outputs 3D

rendered objects. PSNR was used as the sole metric for

evaluating the quality of the final rendering output. All

experiments were set up and run on publicly available

Colab platforms, which imposed severe limitations on

computing resources. Analysis of the experimental results

show that computing power and training dataset quality,

among other factors, put up strong challenges in the path

for deploying NeRF techniques in fruit representation for

citrus harvesting tasks.

* The aliases “citrus” and “orange” are used to

distinguish between the two citrus trees.

1. Introduction

Machine vision is expected to play a large role in robotic

fruit harvesting. Fruit detection is essential for the

implementation of tree fruit yield estimation, and

automated fruit harvesting. An accurate and fast fruit

detection system is a key element of autonomous

agricultural robotic platforms [1].

Illumination, background and occlusions create

challenges for fruit detection and harvesting. Occlusion is

intense in citrus canopies. It creates obstruction for the

camera views, but also for the end effector designed for

harvesting the fruit [2].

Deep neural networks have been used to improve fruit

detection. However, precise representation and geometric

mapping of the fruits is an outstanding issue due to the

presence of dense leave canopies, i.e. exhibiting low

porosity. The implementation of the NeRF technique in this

study, might help representing and rendering the fruits in

the presence of sparse fruit exposures to the cameras.

The NeRF method has been proposed to synthesize novel

views of complex scenes by optimizing an underlying

continuous volumetric scene function using a sparse set of

input views [3][4]. This novel approach may potentially

help circumvent the described occlusion issues.

The goal of this study was to evaluate the benefits of a

proposed vision system that combines a set of cameras,

arranged surrounding a dense tree canopy, and uses a NeRF

model to synthesize the geometry of the citrus tree scene.

The particular interest is to accurately render and localize

the fruits.

2. Background

Automated citrus harvesting has been a topic in research

community for a few decades. A basic end-effector

prototype using a canopy volume reduction technique has

been proposed and evaluated [2]. Their method provides a

temporary reduction in the tree canopy volume, creating

space for the action of simple and potentially fast three-axis

Cartesian manipulators. The action of the device creates

fruit alignment that can simplify fruit quality assessment

and picking. This simple prototype end-effector

successfully harvested an average of 84% of the fruit and

caused no significant damage to harvested fruits during the

harvest operations.

A Faster Region-based CNN object detector was

developed in a recent deep neural network study. In order

to improve the efficiency and accuracy in the fruit detection

system in 2016, a detector model was adapted through a

transfer function for the fruit detection task using images

computed from color (RGB) and Near-Infrared (NIR) data

[1]. However, this method requires bounding box

annotations. This process can be expensive and time

consuming. For example, in one experiment, the model was

trained to perform the detection of seven fruits, and the

Feasibility study of Representing Scenes as Neural Radiance Fields (NeRF) for

Fruit Representation on Citrus Trees
Uriel A. Rosa

Stanford University
uarosa@stanford.edu

ZhuoYi Cai

Stanford University
zycai@stanford.edu

 2

entire process took four hours to annotate and train the new

model per fruit.

A recently proposed NeRF-based view synthesis method

[3][4] may shed a new light to the path of deploying neural

network in fruit harvesting. This method takes in a single

continuous 5D coordinate (spatial location (x, y, z) and

viewing direction (θ, φ)) and outputs volume density and

view-dependent emitted radiance at that spatial location.

For the remaining of this report, a series of experiments

were performed on a simplified NeRF-based model for

investigating the possibilities and limitations of

incorporating this technique into autonomous robotic fruit

harvesting applications.

3. Approach

3.1. Full NeRF View Synthesis Model

The original NeRF-based synthesis model method

proposed in [3] optimizes an underlying 5D continuous

volumetric scene function using a sparse set of input views

to minimize the rendering error. It takes a 5D input (spatial

location (x, y, z) and viewing direction (θ, φ)) and optimizes

a deep fully-connected neural network (MLP) which

represents the underlying continuous function. This fully-

connected neural network consists of a double layer

structure. The first structure is 8 fully-connected layers,

with 256 channels per layer and using ReLU activation

functions. The second structure is also a fully-connected

layer with 128 channels per layer and uses ReLU activation

functions. As a result, 5D coordinates (x, y, z, θ, φ) are

developed into the radiance (RGB) emitted in each

direction (θ, φ) at each point (x, y, z) in space. A density

function at each point represents the amount of radiance

accumulated by a ray passing through (x, y, z). The key idea

here takes advantage of differentiability of the volume

rendering process. Thus, by training and optimizing the

underlying network with gradient descent, the rendering

error across multiple views can be minimized, and the

trained network is able to render a coherent model of the

scene by assigning respective volume densities and

accurate colors at each location in space.

However, the basic implementation of the optimizing

NeRF representation has convergence issues. A positional

encoding and hierarchical sampling procedure are used in

the full NeRF model. These techniques enable the

multilayer perceptron (MLP) to represent higher frequency

functions and reduce the required number of samples per

camera ray.

3.2. Mini NeRF Simplified View Synthesis Model

The model used in this study is a simplified version of

the full NeRF view synthesis model. Due to computing

resource limitations from the publicly available Colab

platform, this simplified model was built based on the

sample model tiny_nerf [5]. In this model, the network does

not consider directional information (θ, φ) as the input and

hierarchical sampling optimization procedure is not

included. Thus, the same rendering quality as the original

paper is not expected, but the data collected from the

experiments conducted in this study should be sufficiently

informative for the purpose of this study.

Figure 1 shows the modified version of the NeRF

pipeline. The first step in the pipeline is to extract rays from

the images using the image size, focal length and camera-

to-world matrices (C2W). Then, based on the number of

samples per ray setting, a sampled set of 3D points along

with their spatial coordinates are generated by marching

through each camera ray. The positional encoding step is

also adopted from the original paper to map the images into

high dimensional input for the network. As suggested in [6],

mapping inputs to a higher dimensional space using high

frequency functions helps better fitting data with high

frequency variation contents. This is the case as in the tree

images which have high frequency variation properties due

to the constitution of leaves and fruits. Following the

mapping function used in [3], the encoding function used

is:

𝑟(𝑥) = (sin(20𝜋𝑥) , cos(20𝜋𝑥) , … , sin(2𝐿−1𝜋𝑥) , cos(2𝐿−1𝜋𝑥)) (1)

where L is the encoding dimensional parameter.

After the sampled set of 3D coordinates are mapped to a

higher dimensional space in PosEnc. this set of points and

coordinates are then fed to the MLP networks. Since this

model does not include directional information, instead of

using the double “stack” structure like in the original paper,

this MLP network only comprises of 8 fully-connected

layers with 256 channels per layer and using ReLU

activation functions. In one of the following experiments,

network structure was modified to examine the effects it has

on the rendered object output. In the following step, using

the output emitted RGB color of each point in space from

the network and the target images to calculate the training

loss and PSNR. After N iterations, the RGB output from the

network is then used to render the final 3D images.

 3

Figure 1 The mini NeRF pipeline diagram

3.3. Volume Rendering with Radiance Fields

The color of any ray passing through the scene is

rendered using principles from ray tracing volume

rendering techniques [7]. As described in [6], the expected

color 𝐶(𝑟) of a camera ray could be estimated using a

discrete set of stratified samples with the following

equation:

𝐶(𝑟) = ∑ 𝑇𝑖𝛼𝑖𝒄𝑖
𝑁
𝑖=1 (2)

where,

𝑇𝑖 = 𝑒xp (− ∑ 𝜎𝑗𝛿𝑗
𝑖−1
𝑗=1) (3)

𝛼𝑖 = 1 − 𝑒xp (−𝜎𝑗𝛿𝑗) (4)

The 𝜎 represents the volumetric density, which can be

interpreted as the differential probability of a ray

terminating at a point along the ray. The 𝛿 is the distance

between adjacent ray samples and 𝒄𝑖 is the RGB color

estimated by the model at the sample locations.

4. Experiment Infrastructure Setup

4.1. Data Acquisition

In this study, synthetic images of an orange and a citrus

tree along with ground truth camera poses and bounds were

extracted from the Blender graphics package [8] by using

Python3 scripts. Figure 2 shows the Citrus and the Orange

tree models.

Figure 2 Citrus and Orange Tree Models

The Eleven cameras with focal distance f = 14mm were

placed around the tree sector from -45° to 45° as illustrated

in Figure 3. 11. The images were captured and available for

training. As a result, it was learned that this small quantity

of images was far from sufficient from obtaining a basic

NeRF model to rendering any meaningful images.

Figure 3 Initial Camera Layout Setup

This issue was corrected by capturing larger number of

images using an automated script. A camera is set up such

that it can capture images 360° surrounding the tree at every

3.6°. This setup is demonstrated in Figure 4. Images were

captured with different focal lengths and resolutions. In

addition, the angle between two adjacent images was

determined as 360°/VIEWs. VIEWs represent the total

number of images captured for the dataset. During the

capturing process, the corresponding camera poses were

extracted directly from Blender and packed along with the

images. All images for each dataset shared the same focal

length.

 4

Figure 4 Camera Setup in Blender

In an image dataset of the orange tree, a spot light with 10

KW illumination power was introduced to enhance images

captured from reflected tree leaves. This approach

conditioned the model for the experiments later conducted

where the effect of different object types on the NeRF

network performance was studied. Figure 5 shows the

effect of the lighting enhancement and its positioning with

respect to the tree.

Figure 5 Lighting for Orange Tree

Table 1 lists all the datasets used for the following

evaluations.

Table 1 Dataset List

Object Resolution # of images Focal (mm)

Orange 100x100 200 50

Citrus 100x100 200 50

Citrus 200x200 200 50

Citrus 200x200 200 120

Citrus 100x100 2000 50

4.2. Computational Environment

The miniNeRF pipeline is implemented in the Colab

Environment. This environment imposes several

limitations and poses some challenges to the experiments

conducted in this study.

First limitation is the resource allocation by Colab. This

resulted in an unstable computational resource for each

conducted experiment. Different runs set with the same

settings showed different run times so that it was not

possible using execution times to comparing computing

performances.

Second, there were 12-hour hard-stop limits imposed for

each run. Colab stops the execution without saving the

experimental model. Also, there was a limit in the GPU

resource usage controlled by the Colab Environment. Two

different accounts were required to continue the

experiments, or upgrade to the Pro version.

The most critical limitation encountered was the OOM

(memory) issue. This prevented the runs from using higher

resolution images and increasing the ray sample beyond 65.

However, besides all these limitations, the data collected

through the experiments were informative for the purpose

of this study.

5. Results

A series of experiments we conducted in this study to

find out the limitations and possibilities in deploying Neural

Radiance Fields technique for fruit representation on a

citrus tree.

5.1. Experimental Constraints

As discussed in section 4.2, the Colab environment

imposed some limitations on the flexibility of the delineated

experiments. Here are a few constraints:

• Resolution: not higher than 200x200

• Ray Samples: not higher than 65

• PosEnc Dimension: not higher than 24

• Iterations: not higher than 20000

• Evaluation Metric: PSNR

Only the PSNR was used in this evaluation due to the

instability of the Colab environment. The PSNR is

calculated using equation (5):

𝑃𝑆𝑁𝑅 = −10 ∗ log10 𝐿𝑜𝑠𝑠 (5)

where 𝐿𝑜𝑠𝑠 is the mean square of the difference between

the rendering RGB values and the ground truth images.

5.2. Experiment 1: Object Type

Two tree models, orange and citrus trees, were used to

examining if object geometry, color and lighting condition

have any effects on the training and rendering performance

of the model.

 5

Figure 6 Sample Citrus (left) and Orange (right) Tree

Image

Figure 6 shows a pair of sample images. A citrus tree

image under normal condition is shown on the left. An

orange tree image with a 10KW light source added is shown

on the right. Due to the additional light source, there were

more light intensity reflected from the leaves. Also, the

color of fruit and leaves shows more saturation on the

orange tree.

 Two datasets with 200x200 and 100x100 resolution

images with focal lengths of 50mm and 150mm were used

in the experiment runs. Ray samples were set to 65.

Positional encoding dimension was set to 6. After 100

iterations, the citrus tree images seemed to give a better

rendering result with the PSNR around 18.5 while the

orange tree images result in a PSNR around 14.5. Figure 7

shows this comparison results.

Figure 7 PSNR Rating Comparison on Object Type

 The citrus tree images result in relatively higher PSNR

may be due to the reflection gloss on the orange tree leaves.

Also, the citrus tree shows denser green color at the center

of the images. Both runs had similar run times around 3

hours. Assuming there were the same computing resources

on both runs, the object type did not affect the computing

performance, but the color and glossy surface of the object

seemed to reduce the rendering quality of the object. This

is critical because, in the context of fruit harvesting, the

images taken by the robot are mostly under sunny weather

conditions. Exposure may need to be adjusted accordingly.

5.3. Experiment 2: Focal Length

Images with focal length 50mm and 150mm were

examined in this experiment. Figure 8 shows a pair of

sample images. On the left there is the image with f=50mm

and the image with f=150mm is on the right.

Figure 8 Citrus Tree images with 50mm and 150mm

focal length

There is a contrast separation between the tree and the

background on the image with 50mm while the image with

150mm is filled with leaves and fruit due to the zooming

effect of the lens.

Two datasets with 200-200x200 resolution images with

focal length 50mm and 150mm respectively were used. Ray

sample was set to 65. Positional encoding dimension was 6.

After 250 iterations, the images with 50mm resulted in

significantly better rendering performance with a PSNR of

17.0 PSNR while images with 150mm resulted in a PSNR

of only 11.6.

Figure 9 PSNR Rating Comparison on Camera Focal

Length

 The images with camera focal length 50mm resulted in

apparent better rendering results. This is most likely

because the separation between the tree and the background

helped the network learning the 3D object in the scene.

Meanwhile, the 150mm images filled with leaves and fruits

did not have the resolution for the network to identify the

actual tree object. For the fruit object, the leaves create a

 6

very noisy background, which highly reduces the network

learning ability. In the context of fruit harvesting, the robot

is likely in close proximity to the fruit. This will give a

challenge to the system for an accurate object detection.

5.4. Experiment 3: Training Iterations

The previously described experiments limited the

training iterations around 100. In this experiment the

training iteration is evaluated.

The same 200x200 image set with 150mm focal length

as the Experiment #2 was used, except for the number of

iterations. It consisted of 200 images. Ray sample setting

remained 65. Positional encoding dimension was 6. The

learning rate of the network was set to 5e-4. However, he

iterations were set to 250 and 1000 in two different runs.

Figure 10 PSNR Comparison on Training Iterations

Figure 10 shows that the network trained with 1000

iterations resulted in only a slightly better rendering

performance. This was partly because of the close-up

images used in this experiment. As discussed previously,

close-up images pulled down the rendering performance. It

was expected the performance gap would significantly

increase between 250 and 1000 iterations if the training

dataset had 50mm images. Also note that the run time for

250 iterations here was about 3 hours while the 1000

iterations took about 8 hours. These run time numbers may

be affected by resource allocation in the Colab

environment.

5.5. Experiment 4: Input Dimension

As discussed in 3.2, mapping inputs to a higher

dimensional space using high frequency functions helped

better fitting data with high frequency variation contents.

In all the experiments discussed previously, the input

positional encoding dimensions were set to 6. This number

may have been sufficient in most cases. However, in this

study, tree images were used as the training datasets. They

tend to have high frequency variation contents due to leaves

and fruit placements, and their shadows. In this experiment,

1950-100x100 images with 50mm focal length were used

as the training dataset. The Ray sample setting was 55. The

positional encoding dimension was increased to 24. The

network run through 20,000 iterations. The result was

significantly different as shown in Figure 11.

Figure 11 PSNR graph with PosEnc = 24 at 20000

iterations

This experiment was very informative in several

observations. First, the PSNR was significantly higher

comparing to the experiments with lower positional

encoding dimensions (24 vs 6). The resulted PSNR for the

run shown in Figure 11 was up to 27.5. This seems to be

consistent with what was expected since the images of the

tree object contains high frequency variation contents.

Second, surprisingly, the training speed was also

significantly faster. The 20,000 iterations could be

completed in about 5 hours. This may have been due to the

better computing resources allocated for the task by Colab.

However, consistent observations were made in other runs

with higher positional encoding dimensions. So, it is

thought the increase of positional encoding dimension

contributes to the training time reduction. Lastly, the PSNR

graph presented on the right in Figure 11 shows that the

PSNR saturates at around 4,000 to 5,000 iterations. This

requires further study. One possible reason is the low image

resolution of the training dataset which does not contain

enough details in the image contents compared to the higher

resolution images. It was not possible to verify this

assumption since the Colab environment prevented the runs

from allowing image resolutions beyond 200x200.

5.6. Experiment 5: Network Structure

The NeRF optimizes a deep fully-connected neural

network (MLP) which represents the underlying continuous

function. In [6], the full version of NeRF includes 8 fully-

connected layers with ReLU activations and 256 channels

per layer. In addition to that, the output of a 256-

dimensional feature vector is concatenated with the camera

ray’s viewing direction and then passed to an additional

fully-connected layer with a ReLU activation and 128

channels before outputting the view-dependent RGB color.

 7

Figure 12 PSNR performance on Network Structure

In this study, since directional information were not

included as the input to the network, the additional output

layer was omitted and the output RGB color was calculated

with a sigmoid function. This experiment attempted to

determine how differently network structures perform. As

in Experiment #4, 1950-100x100 images with 50mm focal

length were used as the training dataset. The Ray sample

setting was 55. The positional encoding dimension was

increased to 24.

Figure 12 shows the results (rendered images and PSNR

vs iterations graph) from three different network structures.

The network for the left bar graph has 8 layers and 256

channels per layer. It has the best performance of the three.

The PSNR saturated at around 4,000 iterations and reached

the value of 27.5. The middle bar graph has the network

with 16 layers and 256 channels per layer. It takes 5,000 to

6,000 iterations to reach PSNR saturation of 26.5. The right

bar graph has an 8-layer network with 256 channels per

layer. The final PSNR is about 25.8. Note that this value

was not the peak value during the training process. Instead,

it was obtained when the training stopped at 5,000

iterations. So, this was probably no the final PSNR value of

the network. But it can be seen that it definitely reaches

more than 5,000 iterations to converge. These results are

presented in Figure 13.

Figure 13 PSNR Comparison on Different Network

Structure

6. Conclusions

From these series of the experiments in this study about

the NeRF representation technique, it has been concluded

that this technique has a huge potential with a few to-be

improved problems. The NeRF can be used to accurately

represent high resolution scenes. However, one constraint

is that it can only be used to represent static scenes. This is

an issue to be addressed in future research if the goal is to

apply this technique in fruit harvesting robotic contexts. In

addition, it requires significant computing power to train

and process the source images. This may require extended

hardware acceleration support. Training image acquisition

is another issue to be addressed, since it requires a large

number of images as the training dataset in order to have

the expected rendering results. Close-up images may pose

additional challenges to the adoption of this technique.

However, further studies are required to substantiate this

statement.

 However, the NeRF technique is reach of potential

applications. If computing resources allow, it is desirable to

seeing how higher resolution images with fewer image

quantities, higher ray sample numbers and different input

dimensions affect the network performance. In addition, it

can be looked even further to seeing if different

implementations can help improving training

performances, such as run time reduction.

 The results of this study did not stablish that the current

implementation of Neural Radiance Fields technique is

ready for applications like fruit harvesting. It can be

concluded that further studies and improvements are

required before this technique can be deployed for the

representation of a citrus tree in the real-world application

context.

7. References

[1] I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez and C.

McCool. DeepFruits: A Fruit Detection System Using

Deep Neural Networks. Sensors (Basel). 2016 Aug

 8

3;16(8):1222. doi: 10.3390/s16081222. PMID:

27527168; PMCID: PMC5017387.

[2] S. Lee and U. A. Rosa. Development of a Canopy

Volume Reduction Technique for Easy Assessment

and Harvesting of Valencia Citrus Fruits. Transactions

of the ASABE. 49(6)1695-1703.

[3] NeRF: Representing Scenes as Neural Radiance Fields

for View Synthesis. B. Mildenhall, P. P. Srinivasan, M.

Tancik, J. T. Barron, R. Ramamoorthi and R. Ng.

ECCV. 2020.

[4] NeRF youtube video. [ECCV 2020] NeRF: Neural

Radiance Fields (10 min talk) - Bing video

[5] https://github.com/bmild/nerf

[6] N. Rahaman, A. Baratin, D. Arpit, F. Dra ̈xler, M. Lin,

F.A. Hamprecht, Y. Ben-gio and A.C. Courville: On

the spectral bias of neural networks. In: ICML (2018)

[7] J.T. Kajiya and B.P.V. Herzen: Ray tracing volume

densities. Computer Graphics (SIGGRAPH) (1984)

[8] Blender Graphic Package. Version 2.81.

8. Supplement Material

Source code and dataset for the experiments can be

downloaded from here. The following table lists the files

included in the package.

Table 2 Submission Package File List

File/Folder Names Description

miniNeRF.ipynb Colab notebook for

miniNeRF

implementation

view360.py Image acquisition code

navelTree.blend Blender file for the

Tree model

cs231a_final_presentation Presentation keynote

videos Some experiment

rendering videos

tree_2000_100x100 2000 100x100 images

dataset

tree_orange Orange tree images

and model

tree_citrus_200x200 200 200x200 images

of citrus tree dataset

tree_1000_100x100 1000 100x100 citrus

tree image dataset

tree_200_10KW 200 100x100 citrus

tree images with

10KW light

citrus_tree_200x200_f150mm 100 200x200 citrus

tree close-up images

tree_100_100x100 100 100x100 citrus

tree images (We

messed up the fruit in

this dataset.)

tree3_11_cams_failed_test 11 images from 11

cams (a failed

experiment; included

here anyway)

https://www.bing.com/videos/search?q=nerf%3a+neural+radiance+fields+youtube+scien&view=detail&mid=CA95C342BD04D8E2EA3CCA95C342BD04D8E2EA3C&FORM=VIRE
https://www.bing.com/videos/search?q=nerf%3a+neural+radiance+fields+youtube+scien&view=detail&mid=CA95C342BD04D8E2EA3CCA95C342BD04D8E2EA3C&FORM=VIRE
https://github.com/bmild/nerf
https://drive.google.com/file/d/1Hj-lidU7x9WoejQgz-4GohzJ32mt5b07/view?usp=sharing

