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Abstract 

 

An accurate and fast fruit detection system is a key 

element of autonomous agricultural robotic platforms.  The 

citrus harvesting task is particularly challenging due to 

illumination, noisy background and occlusions created by 

citrus canopies. In this study, we explore the possibilities 

and limitations in deploying the Neural Radiance Fields 

technique for fruit representation on citrus trees. A 

simplified model representing scenes as Neural Radiance 

Fields for view synthesis was implemented in a series of 

experiments focusing on how object type, neural network 

depth, image resolution, dataset size and ray sample 

resolution affected final 3D object rendering. This 

simplified model only requires RGB images, Camera-to-

World matrices and focal length as inputs and outputs 3D 

rendered objects. PSNR was used as the sole metric for 

evaluating the quality of the final rendering output. All 

experiments were set up and run on publicly available 

Colab platforms, which imposed severe limitations on 

computing resources. Analysis of the experimental results 

show that computing power and training dataset quality, 

among other factors, put up strong challenges in the path 

for deploying NeRF techniques in fruit representation for 

citrus harvesting tasks.  

* The aliases “citrus” and “orange” are used to 

distinguish between the two citrus trees.  

 

1. Introduction 

Machine vision is expected to play a large role in robotic 

fruit harvesting. Fruit detection is essential for the 

implementation of tree fruit yield estimation, and 

automated fruit harvesting. An accurate and fast fruit 

detection system is a key element of autonomous 

agricultural robotic platforms [1].  

Illumination, background and occlusions create 

challenges for fruit detection and harvesting. Occlusion is 

intense in citrus canopies. It creates obstruction for the 

camera views, but also for the end effector designed for 

harvesting the fruit [2].   

Deep neural networks have been used to improve fruit 

detection. However, precise representation and geometric 

mapping of the fruits is an outstanding issue due to the 

presence of dense leave canopies, i.e. exhibiting low 

porosity. The implementation of the NeRF technique in this 

study, might help representing and rendering the fruits in 

the presence of sparse fruit exposures to the cameras. 

The NeRF method has been proposed to synthesize novel 

views of complex scenes by optimizing an underlying 

continuous volumetric scene function using a sparse set of 

input views [3][4]. This novel approach may potentially 

help circumvent the described occlusion issues. 

The goal of this study was to evaluate the benefits of a 

proposed vision system that combines a set of cameras, 

arranged surrounding a dense tree canopy, and uses a NeRF 

model to synthesize the geometry of the citrus tree scene. 

The particular interest is to accurately render and localize 

the fruits.  

2. Background 

Automated citrus harvesting has been a topic in research 

community for a few decades. A basic end-effector 

prototype using a canopy volume reduction technique has 

been proposed and evaluated [2]. Their method provides a 

temporary reduction in the tree canopy volume, creating 

space for the action of simple and potentially fast three-axis 

Cartesian manipulators. The action of the device creates 

fruit alignment that can simplify fruit quality assessment 

and picking. This simple prototype end-effector 

successfully harvested an average of 84% of the fruit and 

caused no significant damage to harvested fruits during the 

harvest operations.  

A Faster Region-based CNN object detector was 

developed in a recent deep neural network study. In order 

to improve the efficiency and accuracy in the fruit detection 

system in 2016, a detector model was adapted through a 

transfer function for the fruit detection task using images 

computed from color (RGB) and Near-Infrared (NIR) data 

[1]. However, this method requires bounding box 

annotations. This process can be expensive and time 

consuming. For example, in one experiment, the model was 

trained to perform the detection of seven fruits, and the 
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entire process took four hours to annotate and train the new 

model per fruit. 

A recently proposed NeRF-based view synthesis method 

[3][4] may shed a new light to the path of deploying neural 

network in fruit harvesting. This method takes in a single 

continuous 5D coordinate (spatial location (x, y, z) and 

viewing direction (θ, φ)) and outputs volume density and 

view-dependent emitted radiance at that spatial location. 

For the remaining of this report, a series of experiments 

were performed on a simplified NeRF-based model for 

investigating the possibilities and limitations of 

incorporating this technique into autonomous robotic fruit 

harvesting applications. 

3. Approach 

3.1. Full NeRF View Synthesis Model 

The original NeRF-based synthesis model method 

proposed in [3] optimizes an underlying 5D continuous 

volumetric scene function using a sparse set of input views 

to minimize the rendering error. It takes a 5D input (spatial 

location (x, y, z) and viewing direction (θ, φ)) and optimizes 

a deep fully-connected neural network (MLP) which 

represents the underlying continuous function. This fully-

connected neural network consists of a double layer 

structure. The first structure is 8 fully-connected layers, 

with 256 channels per layer and using ReLU activation 

functions.  The second structure is also a fully-connected 

layer with 128 channels per layer and uses ReLU activation 

functions. As a result, 5D coordinates (x, y, z, θ, φ) are 

developed into the radiance (RGB) emitted in each 

direction (θ, φ) at each point (x, y, z) in space. A density 

function at each point represents the amount of radiance 

accumulated by a ray passing through (x, y, z). The key idea 

here takes advantage of differentiability of the volume 

rendering process.  Thus, by training and optimizing the 

underlying network with gradient descent, the rendering 

error across multiple views can be minimized, and the 

trained network is able to render a coherent model of the 

scene by assigning respective volume densities and 

accurate colors at each location in space.  

However, the basic implementation of the optimizing 

NeRF representation has convergence issues. A positional 

encoding and hierarchical sampling procedure are used in 

the full NeRF model. These techniques enable the 

multilayer perceptron (MLP) to represent higher frequency 

functions and reduce the required number of samples per 

camera ray.  

3.2. Mini NeRF Simplified View Synthesis Model 

The model used in this study is a simplified version of 

the full NeRF view synthesis model. Due to computing 

resource limitations from the publicly available Colab 

platform, this simplified model was built based on the 

sample model tiny_nerf [5]. In this model, the network does 

not consider directional information (θ, φ) as the input and 

hierarchical sampling optimization procedure is not 

included. Thus, the same rendering quality as the original 

paper is not expected, but the data collected from the 

experiments conducted in this study should be sufficiently 

informative for the purpose of this study.  

Figure 1 shows the modified version of the NeRF 

pipeline. The first step in the pipeline is to extract rays from 

the images using the image size, focal length and camera-

to-world matrices (C2W). Then, based on the number of 

samples per ray setting, a sampled set of 3D points along 

with their spatial coordinates are generated by marching 

through each camera ray. The positional encoding step is 

also adopted from the original paper to map the images into 

high dimensional input for the network. As suggested in [6], 

mapping inputs to a higher dimensional space using high 

frequency functions helps better fitting data with high 

frequency variation contents. This is the case as in the tree 

images which have high frequency variation properties due 

to the constitution of leaves and fruits. Following the 

mapping function used in [3], the encoding function used 

is: 

 

𝑟(𝑥) = (sin(20𝜋𝑥) , cos(20𝜋𝑥) , … , sin(2𝐿−1𝜋𝑥) , cos(2𝐿−1𝜋𝑥))   (1) 

 

where L is the encoding dimensional parameter. 

After the sampled set of 3D coordinates are mapped to a 

higher dimensional space in PosEnc. this set of points and 

coordinates are then fed to the MLP networks. Since this 

model does not include directional information, instead of 

using the double “stack” structure like in the original paper, 

this MLP network only comprises of 8 fully-connected 

layers with 256 channels per layer and using ReLU 

activation functions. In one of the following experiments, 

network structure was modified to examine the effects it has 

on the rendered object output. In the following step, using 

the output emitted RGB color of each point in space from 

the network and the target images to calculate the training 

loss and PSNR. After N iterations, the RGB output from the 

network is then used to render the final 3D images. 
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Figure 1 The mini NeRF pipeline diagram 

3.3. Volume Rendering with Radiance Fields  

The color of any ray passing through the scene is 

rendered using principles from ray tracing volume 

rendering techniques [7]. As described in [6], the expected 

color 𝐶(𝑟) of a camera ray could be estimated using a 

discrete set of stratified samples with the following 

equation: 

 

𝐶(𝑟) =  ∑ 𝑇𝑖𝛼𝑖𝒄𝑖
𝑁
𝑖=1         (2) 

where, 

 

𝑇𝑖 = 𝑒xp (− ∑ 𝜎𝑗𝛿𝑗
𝑖−1
𝑗=1 )   (3) 

𝛼𝑖 = 1 − 𝑒xp (−𝜎𝑗𝛿𝑗)     (4) 

 

The 𝜎 represents the volumetric density, which can be 

interpreted as the differential probability of a ray 

terminating at a point along the ray. The 𝛿 is the distance 

between adjacent ray samples and 𝒄𝑖  is the RGB color 

estimated by the model at the sample locations. 

4. Experiment Infrastructure Setup 

4.1. Data Acquisition 

In this study, synthetic images of an orange and a citrus 

tree along with ground truth camera poses and bounds were 

extracted from the Blender graphics package [8] by using 

Python3 scripts. Figure 2 shows the Citrus and the Orange 

tree models. 

 
Figure 2 Citrus and Orange Tree Models 

 

The Eleven cameras with focal distance f = 14mm were 

placed around the tree sector from -45° to 45° as illustrated 

in Figure 3. 11. The images were captured and available for 

training. As a result, it was learned that this small quantity 

of images was far from sufficient from obtaining a basic 

NeRF model to rendering any meaningful images.  

 

 
Figure 3 Initial Camera Layout Setup 

 

This issue was corrected by capturing larger number of 

images using an automated script. A camera is set up such 

that it can capture images 360° surrounding the tree at every 

3.6°. This setup is demonstrated in Figure 4. Images were 

captured with different focal lengths and resolutions. In 

addition, the angle between two adjacent images was 

determined as 360°/VIEWs. VIEWs represent the total 

number of images captured for the dataset. During the 

capturing process, the corresponding camera poses were 

extracted directly from Blender and packed along with the 

images. All images for each dataset shared the same focal 

length. 
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Figure 4 Camera Setup in Blender 

In an image dataset of the orange tree, a spot light with 10 

KW illumination power was introduced to enhance images 

captured from reflected tree leaves. This approach 

conditioned the model for the experiments later conducted 

where the effect of different object types on the NeRF 

network performance was studied. Figure 5 shows the 

effect of the lighting enhancement and its positioning with 

respect to the tree. 

 
Figure 5 Lighting for Orange Tree 

Table 1 lists all the datasets used for the following 

evaluations. 

Table 1 Dataset List 

Object Resolution # of images Focal (mm) 

Orange 100x100 200 50 

Citrus 100x100 200 50 

Citrus 200x200 200 50 

Citrus 200x200 200 120 

Citrus 100x100 2000 50 

 

4.2. Computational Environment 

The miniNeRF pipeline is implemented in the Colab 

Environment. This environment imposes several 

limitations and poses some challenges to the experiments 

conducted in this study.  

First limitation is the resource allocation by Colab. This 

resulted in an unstable computational resource for each 

conducted experiment. Different runs set with the same 

settings showed different run times so that it was not 

possible using execution times to comparing computing 

performances.  

Second, there were 12-hour hard-stop limits imposed for 

each run. Colab stops the execution without saving the 

experimental model. Also, there was a limit in the GPU 

resource usage controlled by the Colab Environment. Two 

different accounts were required to continue the 

experiments, or upgrade to the Pro version.  

The most critical limitation encountered was the OOM 

(memory) issue. This prevented the runs from using higher 

resolution images and increasing the ray sample beyond 65.  

However, besides all these limitations, the data collected 

through the experiments were informative for the purpose 

of this study.  

5. Results 

A series of experiments we conducted in this study to 

find out the limitations and possibilities in deploying Neural 

Radiance Fields technique for fruit representation on a 

citrus tree. 

5.1. Experimental Constraints 

As discussed in section 4.2, the Colab environment 

imposed some limitations on the flexibility of the delineated 

experiments. Here are a few constraints: 

• Resolution: not higher than 200x200 

• Ray Samples: not higher than 65 

• PosEnc Dimension: not higher than 24 

• Iterations: not higher than 20000 

• Evaluation Metric: PSNR 

Only the PSNR was used in this evaluation due to the 

instability of the Colab environment. The PSNR is 

calculated using equation (5): 

 

𝑃𝑆𝑁𝑅 =  −10 ∗ log10 𝐿𝑜𝑠𝑠     (5) 

 

where 𝐿𝑜𝑠𝑠 is the mean square of the difference between 

the rendering RGB values and the ground truth images.  

5.2. Experiment 1: Object Type 

Two tree models, orange and citrus trees, were used to 

examining if object geometry, color and lighting condition 

have any effects on the training and rendering performance 

of the model.  
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Figure 6 Sample Citrus (left) and Orange (right) Tree 

Image 

             

Figure 6 shows a pair of sample images. A citrus tree 

image under normal condition is shown on the left. An 

orange tree image with a 10KW light source added is shown 

on the right. Due to the additional light source, there were 

more light intensity reflected from the leaves. Also, the 

color of fruit and leaves shows more saturation on the 

orange tree. 

 Two datasets with 200x200 and 100x100 resolution 

images with focal lengths of 50mm and 150mm were used 

in the experiment runs. Ray samples were set to 65. 

Positional encoding dimension was set to 6. After 100 

iterations, the citrus tree images seemed to give a better 

rendering result with the PSNR around 18.5 while the 

orange tree images result in a PSNR around 14.5. Figure 7 

shows this comparison results. 

 
Figure 7 PSNR Rating Comparison on Object Type 

 

 The citrus tree images result in relatively higher PSNR 

may be due to the reflection gloss on the orange tree leaves. 

Also, the citrus tree shows denser green color at the center 

of the images. Both runs had similar run times around 3 

hours. Assuming there were the same computing resources 

on both runs, the object type did not affect the computing 

performance, but the color and glossy surface of the object 

seemed to reduce the rendering quality of the object. This 

is critical because, in the context of fruit harvesting, the 

images taken by the robot are mostly under sunny weather 

conditions. Exposure may need to be adjusted accordingly. 

5.3. Experiment 2: Focal Length 

Images with focal length 50mm and 150mm were 

examined in this experiment. Figure 8 shows a pair of 

sample images. On the left there is the image with f=50mm 

and the image with f=150mm is on the right.  

 
Figure 8 Citrus Tree images with 50mm and 150mm 

focal length 

There is a contrast separation between the tree and the 

background on the image with 50mm while the image with 

150mm is filled with leaves and fruit due to the zooming 

effect of the lens. 

Two datasets with 200-200x200 resolution images with 

focal length 50mm and 150mm respectively were used. Ray 

sample was set to 65. Positional encoding dimension was 6. 

After 250 iterations, the images with 50mm resulted in 

significantly better rendering performance with a PSNR of 

17.0 PSNR while images with 150mm resulted in a PSNR 

of only 11.6. 

 
Figure 9 PSNR Rating Comparison on Camera Focal 

Length 

 

 The images with camera focal length 50mm resulted in 

apparent better rendering results. This is most likely 

because the separation between the tree and the background 

helped the network learning the 3D object in the scene. 

Meanwhile, the 150mm images filled with leaves and fruits 

did not have the resolution for the network to identify the 

actual tree object. For the fruit object, the leaves create a 
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very noisy background, which highly reduces the network 

learning ability. In the context of fruit harvesting, the robot 

is likely in close proximity to the fruit. This will give a 

challenge to the system for an accurate object detection. 

5.4. Experiment 3: Training Iterations 

The previously described experiments limited the 

training iterations around 100. In this experiment the 

training iteration is evaluated. 

The same 200x200 image set with 150mm focal length 

as the Experiment #2 was used, except for the number of 

iterations. It consisted of 200 images. Ray sample setting 

remained 65. Positional encoding dimension was 6. The 

learning rate of the network was set to 5e-4. However, he 

iterations were set to 250 and 1000 in two different runs. 

 
Figure 10 PSNR Comparison on Training Iterations 

 

Figure 10 shows that the network trained with 1000 

iterations resulted in only a slightly better rendering 

performance. This was partly because of the close-up 

images used in this experiment. As discussed previously, 

close-up images pulled down the rendering performance. It 

was expected the performance gap would significantly 

increase between 250 and 1000 iterations if the training 

dataset had 50mm images. Also note that the run time for 

250 iterations here was about 3 hours while the 1000 

iterations took about 8 hours. These run time numbers may 

be affected by resource allocation in the Colab 

environment.  

5.5. Experiment 4: Input Dimension 

As discussed in 3.2, mapping inputs to a higher 

dimensional space using high frequency functions helped 

better fitting data with high frequency variation contents. 

In all the experiments discussed previously, the input 

positional encoding dimensions were set to 6. This number 

may have been sufficient in most cases. However, in this 

study, tree images were used as the training datasets. They 

tend to have high frequency variation contents due to leaves 

and fruit placements, and their shadows. In this experiment, 

1950-100x100 images with 50mm focal length were used 

as the training dataset. The Ray sample setting was 55. The 

positional encoding dimension was increased to 24. The 

network run through 20,000 iterations. The result was 

significantly different as shown in Figure 11. 

 

 
Figure 11 PSNR graph with PosEnc = 24 at 20000 

iterations 

 

This experiment was very informative in several 

observations. First, the PSNR was significantly higher 

comparing to the experiments with lower positional 

encoding dimensions (24 vs 6). The resulted PSNR for the 

run shown in Figure 11 was up to 27.5. This seems to be 

consistent with what was expected since the images of the 

tree object contains high frequency variation contents. 

Second, surprisingly, the training speed was also 

significantly faster. The 20,000 iterations could be 

completed in about 5 hours. This may have been due to the 

better computing resources allocated for the task by Colab. 

However, consistent observations were made in other runs 

with higher positional encoding dimensions. So, it is 

thought the increase of positional encoding dimension 

contributes to the training time reduction. Lastly, the PSNR 

graph presented on the right in Figure 11 shows that the 

PSNR saturates at around 4,000 to 5,000 iterations. This 

requires further study. One possible reason is the low image 

resolution of the training dataset which does not contain 

enough details in the image contents compared to the higher 

resolution images. It was not possible to verify this 

assumption since the Colab environment prevented the runs 

from allowing image resolutions beyond 200x200.  

5.6. Experiment 5: Network Structure 

The NeRF optimizes a deep fully-connected neural 

network (MLP) which represents the underlying continuous 

function. In [6], the full version of NeRF includes 8 fully-

connected layers with ReLU activations and 256 channels 

per layer. In addition to that, the output of a 256-

dimensional feature vector is concatenated with the camera 

ray’s viewing direction and then passed to an additional 

fully-connected layer with a ReLU activation and 128 

channels before outputting the view-dependent RGB color. 
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Figure 12 PSNR performance on Network Structure 

 

In this study, since directional information were not 

included as the input to the network, the additional output 

layer was omitted and the output RGB color was calculated 

with a sigmoid function. This experiment attempted to 

determine how differently network structures perform. As 

in Experiment #4, 1950-100x100 images with 50mm focal 

length were used as the training dataset. The Ray sample 

setting was 55. The positional encoding dimension was 

increased to 24. 

Figure 12 shows the results (rendered images and PSNR 

vs iterations graph) from three different network structures. 

The network for the left bar graph has 8 layers and 256 

channels per layer. It has the best performance of the three. 

The PSNR saturated at around 4,000 iterations and reached 

the value of 27.5. The middle bar graph has the network 

with 16 layers and 256 channels per layer. It takes 5,000 to 

6,000 iterations to reach PSNR saturation of 26.5. The right 

bar graph has an 8-layer network with 256 channels per 

layer. The final PSNR is about 25.8. Note that this value 

was not the peak value during the training process. Instead, 

it was obtained when the training stopped at 5,000 

iterations. So, this was probably no the final PSNR value of 

the network. But it can be seen that it definitely reaches 

more than 5,000 iterations to converge. These results are 

presented in Figure 13. 

 

 
Figure 13 PSNR Comparison on Different Network 

Structure 

6. Conclusions 

From these series of the experiments in this study about 

the NeRF representation technique, it has been concluded 

that this technique has a huge potential with a few to-be 

improved problems. The NeRF can be used to accurately 

represent high resolution scenes. However, one constraint 

is that it can only be used to represent static scenes. This is 

an issue to be addressed in future research if the goal is to 

apply this technique in fruit harvesting robotic contexts. In 

addition, it requires significant computing power to train 

and process the source images. This may require extended 

hardware acceleration support. Training image acquisition 

is another issue to be addressed, since it requires a large 

number of images as the training dataset in order to have 

the expected rendering results. Close-up images may pose 

additional challenges to the adoption of this technique. 

However, further studies are required to substantiate this 

statement.  

 However, the NeRF technique is reach of potential 

applications. If computing resources allow, it is desirable to 

seeing how higher resolution images with fewer image 

quantities, higher ray sample numbers and different input 

dimensions affect the network performance. In addition, it 

can be looked even further to seeing if different 

implementations can help improving training 

performances, such as run time reduction.  

 The results of this study did not stablish that the current 

implementation of Neural Radiance Fields technique is 

ready for applications like fruit harvesting. It can be 

concluded that further studies and improvements are 

required before this technique can be deployed for the 

representation of a citrus tree in the real-world application 

context. 
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8.  Supplement Material 

Source code and dataset for the experiments can be 

downloaded from here. The following table lists the files 

included in the package. 

 

Table 2 Submission Package File List 

File/Folder Names Description 

miniNeRF.ipynb Colab notebook for 

miniNeRF 

implementation 

view360.py Image acquisition code 

navelTree.blend Blender file for the 

Tree model  

cs231a_final_presentation Presentation keynote 

videos Some experiment 

rendering videos 

tree_2000_100x100 2000 100x100 images 

dataset 

tree_orange Orange tree images 

and model 

tree_citrus_200x200 200 200x200 images 

of citrus tree dataset 

tree_1000_100x100 1000 100x100 citrus 

tree image dataset 

tree_200_10KW 200 100x100 citrus 

tree images with 

10KW light 

citrus_tree_200x200_f150mm 100 200x200 citrus 

tree close-up images 

tree_100_100x100 100 100x100 citrus 

tree images (We 

messed up the fruit in 

this dataset.) 

tree3_11_cams_failed_test 11 images from 11 

cams (a failed 

experiment; included 

here anyway) 
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https://github.com/bmild/nerf
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