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Abstract

Differently from stereo depth estimation, single image
depth estimation is always an ill posed problem due to am-
biguities. In recent years, convolutional neural networks
(CNN) have illustrated dominating capability in solving
some ill posed problem, including single image depth es-
timation. In this project, I propose a U-Net based network
structure to solve the single image depth estimation which
runs at a real time inference speed. Both quantitative re-
sults and qualitative results show that my approach not only
surpasses the baseline method in accuracy but also largely
improved the computational efficiency.

1. Introduction
Apart from the RGB color information, depth is one of

the most important component for scene understanding and
geometric relationship interpretation. It provides additional
inter-object position information as well as distance infor-
mation relative to the camera, which has been proved to
be useful in a lot of areas, such as, 3d reconstruction [21],
recognition and robotics [15]. Also, with the rapid devel-
opment of self-driving vehicles, depth estimation via RGB
cameras has great potential in providing assistance to Li-
dars, or even serves as a possible replacement with signifi-
cantly lower cost.

While estimating depth based on stereo images is a far
better studied topic traditionally, single image depth esti-
mation meets the actual circumstances in real life as images
are mostly taken not with a pair of cameras but rather ca-
sually one camera. In stereo cases, depth estimation can
be reduced to image point correspondence searching prob-
lem, and the depth can be recovered deterministically [7]. In
contrast, singe image depth estimation has intrinsic ambigu-
ity thus requires leveraging global information and even se-
mantic features. Fortunately, with the development of deep
neural networks, people now have more tools to tackle vi-
sion tasks with features learnt and embedded by the neural
networks. Line angles, perspective, object sizes, parallelism
are all critical to approximate an accurate depth map. Se-

Figure 1. An example of RGB image Ic and depth image Id pair

mantic features such as object class are also proven to be
useful [12].

This project aims to develop a deep neural network to
perform single image depth estimation in an offline scenario
at the speed of realtime inference, which is a fundamental
step for realtime video depth estimation. Potential bene-
fited fields including self-driving technologies, robotics and
medical surgery. In this report, I will first formally define
the single image depth estimation problem, then discuss a
baseline method used as well as my refined approach. A
combined loss function is adopted to focusing the training
of the network in different aspects. Following the techni-
cal approach, both the quantitative results and qualitative
results will be provided and analyzed to demonstrate my
approach’s improvements over the baseline in terms of both
accuracy and inference speed. Lastly, a brief conclusion
with current limitations and future work will close this re-
port.

2. Related Work
A large amount of learning based approaches of single

image depth estimation has been proposed recently. In this
section, I will discuss three key relevant learning based ar-
eas in depth estimation, comparing their difference in appli-
cable scenarios, technical focuses and approaches.

2.1. Supervised Stereo Depth Estimation

Typically, stereo depth estimation methods involve a pair
of rectified images and a predefined method to calculate per
pixel similarity and correspondence. Then the depth is in-
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ferred from the disparity between correspondent pixels as
the depth is a scaled inverse of the disparity. The predefined
method is usually a search based method in traditional 3d
vision. In contrast, learning based methods use CNNs to
predict the matching function, treating the matching prob-
lem as a supervised learning problem. The training process
requires a ground truth label of either the correspondence or
the depth image. Numerous methods [24, 11] have proven
that learning based matching methods’ performance is su-
perior to traditional hand crafted features.

Another approach in supervised stereo depth estimation
is to directly computes the correspondence map or the dis-
parity map between two images [5]. Similarly, this can be
formulated as a regression problem with the help of existed
correspondence label or depth label. This type of methods
works in an end-to-end style reducing the steps to generat-
ing the final depth map.

Large amounts of accurately labelled ground truth dis-
parity data and stereo image pairs are necessary for both of
these methods. However, this type of data can be too diffi-
cult or too expensive to obtain in some real world scenarios.
A work this problem is to use synthetic data to train the net-
work. As computer graphics technology develops, synthetic
data is becoming realistic and has been proven to work well
in training neural networks [3].

2.2. Supervised Single Image Depth Estimation

Different from stereo depth estimation, single image
depth estimation indicates that only a single image is avail-
able for depth prediction at test time. Local patch based
method is a major approach to this problem. It generally in-
volves dividing images into local patches and estimates the
3D location and orientation of planes in the patches [22].
However, this type of methods suffer from several disadvan-
tages. One is sometimes they cannot reconstruct 3d infor-
mation from some complex surfaces the other is the depth
predictions are made locally thus lack global information
and structural continuity.

Instead of using patch based method, Eigen et al. [4]
showed that CNNs can predict dense pixel-level depth esti-
mation directly. A two scale deep network was adopted and
no hand crafted features were used. Several works also used
techniques such as CRFs to reformulate the depth estima-
tion problem from a regression problem to a classification in
order to improve accuracy [2]. Some end-to-end networks
were also proposed together with some combined loss func-
tions to improve the prediction accuracy [13]. AdaBins fur-
ther incorporates transformer blocks from natural language
processing to adaptively estimate center depth value per im-
age [1]. Works like [14] focuses on the inference speed of
the network as real time depth estimation is critical to sce-
narios like self-driving and medical surgeries. In a word,
supervised direct depth prediction methods generally out-

performs patch based methods due to its capacity of lever-
aging global information as well as local information.

Again, supervised single image depth estimation re-
quires large amount of labeled depth image to perform the
training process, which still faces challenges in the data col-
lection part.

2.3. Unsupervised Depth Estimation

Unsupervised Depth Estimation requires no ground truth
during training. A common approach to this is leveraging
view synthesis method. Given a pair of stereo image, using
the left view to generate the corresponding right view and
compare it against the real right view. With a chosen image
reconstruction loss, the problem can be reduced to a regres-
sion problem. Based on the predicted right view, the dispar-
ity map can be calculated thus the depth can be inferred.
Networks like The Deep3D network [23] has proved the
feasibility of this approach. Godard et al. [6] explored more
complex loss function and epipolar geometry constraints in
training and achieved significantly better results.

However, unsupervised depth estimation can suffer from
occlusion due to the lack of ground truth depth label. This
requires additional work in occlusion reasoning, which in-
creases the task difficulty and the network’s inference time.
Specular and transparent materials also pose corner cases in
left and right consistency checking, which limits the gener-
alization ability of the network. Last but not least, rectified
and temporally aligned stereo pairs are necessary for unsu-
pervised depth estimation.

I chose to tackle the single image depth estimation prob-
lem with a supervised approach, focusing on maintaining
acceptable accuracy and visual quality of the prediction as
well as increasing the inference speed to achieve real time
computational efficiency.

3. Technical Approach

To practically solve this problem, I will first formulate
the single image depth estimation as a regression task for
CNN. Two critical elements are required for a CNN regres-
sion problem, the network structure and the loss function.
They will both be discussed in detail following the problem
statement part.

3.1. Problem Statement

The problem of depth estimation from a single RGB im-
ages is an ill-posed problem. From the class we know struc-
ture ambiguities will occur and even certain types of mate-
rials such as reflective materials will contribute to geometry
ambiguities. Recently, the development of CNNs provides
a regression-based method to tackle this problem.

The single image depth estimation problem can be for-
mulated as an arbitrary RGB image Ic passed into a function
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Figure 2. A feature map flow chart

Figure 3. Network basic blocks

f to calculate a corresponding depth image Id. Since this
project is based on deep learning techniques, a trained CNN
N will be used as f to produce the output depth image Id

Id = N (Ic). (1)

This simple equation formulates an end-to-end approach to
perform the single image depth estimation with a CNN.

With a predefined loss function L(Ix, Iy), we will be
able to come up with a regression problem on the training
set, where the target function is

minL(N (Ic), Îd). (2)

Îd denotes the ground truth label of Ic, which is a collected
depth image.

3.2. Network Structure

My network structure is based on U-Net, a commonly
adopted method in computer vision tasks, such as object de-
tection, object selection and semantic segmentation. To be

specific, my model consists of an encoder E and a decoder
D, whose functions are defined as follows,

φ(I) = E(I) (3)

I = D(φ(I)), (4)

where φ(I) is the semantic feature of image I . Semantic
feature of the original color image φ(Ic) will be extracted
by the encoder E and the decoderD will reconstruct a depth
image Id based on semantic feature φ(Ic). The overall net-
work design is illustrated in Fig. 2.

For the encoder, the basic component is a convolutional
block consists of two 3x3 convolutional layer each followed
with a batch normalization [9] and a ReLU activation func-
tion for non-linearity [17]. At the end of each convolutional
block, there is an additional maxpooling layer [16] to down
sample the feature map as well as to extract regionally im-
portant semantic information, represented as the maximum
value in each pooling window. An illustration of a convolu-
tional block can be found at Fig. 3.

The encoder contains 4 convolutional blocks as well as
two additional layers at the beginning to perform feature
extraction. The input RGB image Ic will be transformed

into a feature map with 101 channels and will be
1

16
the

size in height H and width W of the original RGB image.
And for the decoder, I use bilinear upsampling instead of

using transpose convolution. In my experiment, transpose
convolution tends to introduce some checkerboard artifacts
due to the overlap of transpose convolutional kernels, which
severely downgrades the quality level of the output depth
image since most of the surfaces of objects are continuous
and I expect low frequency to be the majority component of
the depth image, except for edges. The basic component of
the decoder is a upsampling block composed with a single
upsampling layer and two 3x3 convolutional layers and Re-
LUs. A upsampling block is illustrated in Fig. 3 as well.
No batch normalization is involved in the decoder.
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Similar to the encoder, the decoder consists of 4 upsam-
pling blocks and one additional 3x3 convolutional layer at
the end. Together they transform the feature map back to
the size of (1, H,W ). The output should be a depth image
so it only has a single channel.

Furthermore, skip connection is used to connect convo-
lutional blocks and upsampling blocks with the same fea-
ture map size. Skip connections are proved to be effective
in both gradient back propagation [8] and high frequency
[19] reconstruction. Here I use the skip connections to help
stabilize the training as well as to preserve the edges in the
image harmed during maxpooling.

3.3. Loss Design

Our target is to ensure the estimated depth image Id is
close to the ground truth Îd. And I used three types of loss
functions combined as the total loss.

The first one is the L1 loss. L1 loss encourages the over-
all similarity with the ground truth, and thus will result in
better performance in low frequency regions. In practice L1

always works as the basic supervision approach for image
reconstruction problem.

The second is the structural loss Ls, which is

Ls = 1− SSIM(Id, Îd) (5)

, where SSIM denotes structural similarity index measure.
Instead of directly measuring the difference between pixel
values from the network output and the ground truth, SSIM
represents a perceptual similarity level. This works as pixels
tend to have inter-dependencies especially when they are
spatially close. The structural loss Ls provides additional
supervision for image perceptual similarities.

The last one is a high frequency lossLe aimed at improv-
ing the prediction quality on high frequency regions such as
edges and discontinued regions.

Le = (1− e−gx)|p− p̂|+ (1− e−gy )|p− p̂| (6)

, where gx and gy denotes the gradients in horizontal and
vertical directions of the RGB image and p and p̂ denote the
estimated depth value and the ground truth depth value of a
pixel.

Together, I have the final combined loss L as

L =
α

α+ β + γ
L1 +

β

α+ β + γ
Ls +

γ

α+ β + γ
Le (7)

where α, β, γ are positive hyperparameters to control the
weights of different loss functions.

4. Experiment
4.1. Experiment Settings

There exists a wide variety of training and testing dataset
for depth estimation, among which the most popular is the

NYU-Depth-v2 dataset [18]. It consists densely labeled
pairs of aligned RGB and depth images from 464 different
indoor scenes. The training set has 50688 image pairs and
the test set has 654 pairs. Furthermore, I split 1500 RGB
and depth image pairs from the training set to compose the
validation set. Examples of the NYU-Depth-v2 dataset can
be found at Fig. 1

I deployed my CNN model on a desktop with Intel 9700k
CPU, 32 GB memory and a NVIDIA Titan Pascal graphics
card. The framework I chose for implementation is PyTorch
1.4.0 with Python 3.6. Adam optimizer was applied [10],
the learning rate was set to 10−4, and the batch size was
set to 8. For the loss function in Eq.11, α was set to 2 and
γ was set to 5. The large value of γ is to compensate the
smaller magnitude of Le, which I found is about 1

10 of L1

and Ls. Random horizontal flip and Random rotation up to
15 degrees were performed as the data augmentation meth-
ods. Also, the ground truth depth map label is normalized
to [0, 1] in order to reduce the training difficulty. The total
training process takes around 72 hours to finish 50 epochs
until the network converges. The training loss pattern can
be found in Fig. 4.

Figure 4. A training pattern of the combined loss function

4.2. Evaluation

For the evaluation, I picked the first U-Net [20] proposed
in segmentation problem as the baseline method. The base-
line model was trained from scratch with the same batch
size, learning rate, data augmentation method for fair com-
parison.

There are three major aspects for evaluation, including
quantitative metrics measuring the accuracy of the predicted
depth map, inference time of a single RGB image input and
qualitative visual results for direct comparison against the
baseline and ground truth.

4.2.1 Accuracy

As an image regression problem, the accuracy of the pre-
diction compared with the ground truth labels are one of the
most important evaluation steps.
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Figure 5. Qualitative results of current experiments

Two types of metrics are adopted to evaluate the accu-
racy of our model. The first is mean square error (MSE).
The MSE metric measures an average accuracy of the pre-
dicted depth map and tends to address more on the low fre-
quency areas as they are the dominant parts of a depth map.

MSE(Id, Îd) =
1

n

n∑
i

(pi − p̂i)2 (8)

The MSE was an average MSE calculated from the test set.
The second one is the SSIM which measures the per-

ceived quality and visual similarities of two images. The
SSIM serves as an additional accuracy measurement to
compensate MSE’s disadvantages of poor correlation with
human perception of visual system and incapability of dis-
tinguishing between different distortions in images. Simi-
larly, the SSIM metric was a average SSIM calculated over
the whole test set. All together, these two quantitative re-
sults are shown in Table. 1

Table 1. Quantitative accuracy comparison against the baseline

Method MSE SSIM
Baseline 0.04781 0.7549

My method 0.04588 0.7779

My method slightly outperforms the baseline in terms

of both MSE (lower is better) and SSIM (higher is better).
Even though my network is much shallower than the base-
line network, it demonstrate its capacity in predicting the
depth map is at least as strong as the baseline.

4.2.2 Runtime Comparison

The runtime of the network is another key evaluation metric
as one of my major goal is to make the network compact
enough for realtime depth estimation.

First, I compare the parameter number of the baseline
network and my network to evaluate the size of my network.
In Table. 2 we can see that my network is 14× smaller than
the baseline U-Net.

Second, inference time is used as the speed measure-
ment. Since the GPU cache miss has strong negative impact
on inference time, GPU cache warm up is necessary for fair
comparison. To test the inference time, I generate a random
tensor in each iteration and feed it into the network for 100
times for the GPU cache to warm up, then use the average
inference time of the next 10 iterations to measure the end
to end time spent. Together I present the runtime results of
the baseline and my network in Table. 2.

The quantitative results show that my method is able to
run at approximately 6× the speed of the baseline, which is
35.5 FPS. Either the realtime inference requirement is 24,
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Figure 6. An example of failure cases in handling transparent materials

Table 2. Runtime comparison against the baseline

Method Inference Time (ms) FPS #Parameters
Baseline 163.45 6.1 17.26M

My method 28.11 35.5 1.22M

25, or 30 FPS, my network’s inference time now is decent
and meets the real time computing requirement.

4.2.3 Visual Results

In this subsection, I will present the qualitative results and
analysis some improvements of my method’s predictions
over the baseline’s. Some typical failure cases will also be
discussed.

Example quantitative results can be found at Fig.5.
Clearly, my method outperforms the baseline method again
in terms of visual similarities with the ground truth depth
maps. My method produces good continuity in low fre-
quency areas of the predicted depth map, as well as clearer
and more accurate boundaries of the objects, e.g the table in
the first image, the bed in the second, the sofa in the third
and the chairs in the last one.

However, in regions with larger amount of objects, my
network tends to smooth things out. For example, in the
third example of Fig. 5, there are stacked small objects
on the book shelf, which are extremely challenging. The
baseline generates some random patterns while my meth-
ods fails to distinguish between different objects.

Another failure case can be found at Fig. 6. The trans-
parent glass creates reflections which are hard for networks
to distinguish from general textures, thus my network pro-
duces incorrect predictions in those regions.

5. Conclusion

In conclusion, I successfully achieved my goal of real-
time single image depth estimation and demonstrated that
my proposed network significantly outperforms the base-
line method. With 1

14 parameters, my network’s predic-
tions have lower MSE, higher SSIM, runs 6× faster than

the baseline. Also, visual results from my network clearly
have better perceived visual quality.

However, there are still some improvements can be done,
such as the prediction accuracy for smaller objects and for
objects with transparent or reflective materials. Also, it
would make more sense to integrate my network into a
video depth estimation pipeline to test its inference speed
in practice.

I would like to thank CS231A teaching staff for all
the help throughout the quarter and this project definitely
helped me gain much knowledge in depth estimation.
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Supplementary
My code is accessible at github repo
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