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Abstract

We create a hand tracking pipeline by using a Graph
CNN model coupled with a hand bounding box model to
perform hand pose estimation on single RGB images from a
webcam. The thumb tip and index fingertip keypoints can be
used to aid motor-impaired persons perform computer con-
trol tasks such as scrolling or zooming without the need for
mouse and keyboard. We show that the performance of hand
tracking is improved by cropping the image to the hand be-
fore running pose estimation, and achieve near-perfect ac-
curacy. However, performance is limited by the inference
time for pose estimation on a laptop CPU. This is mitigated
by using a multi-threaded approach and various heuristics
to interpolate predictions between available pose estimates.

1. Introduction

Since the advent of Computer Vision, hand pose esti-
mation and tracking has been a long-standing and critical
problem, highly relevant to applications like augmented re-
ality and virtual reality. Hand pose estimation is the process
of modeling a human hand as a skeleton composed of key-
points, usually at the finger joints and palm, and finding
their positions either in 2D or 3D coordinates [1]. In this
project, we developed a hand pose estimation and real-time
keypoint tracking pipeline. We use a Convolutional Neu-
ral Network (CNN) based model to estimate the 21 key-
points of a hand given a RGB image and build a hand track-
ing pipeline to track the position of a few selected hand
keypoints via a webcam. We mapped the movements of
the detected hand keypoints to emulate a computer mouse
or scrolling functions, with a potential application to help
those with fine motor-control impairments to better interact
with a computer.

1.1. Problem Statement

In this project, we build a real-time Hand Pose Estima-
tion and tracking pipeline with the goal of mapping move-
ments of hand keypoints to emulate a computer mouse or
scrolling functions, to aid those suffering from fine motor-
control impairments with computer interaction. To estimate
hand pose, we utilized a Graph Convolutional Neural Net-
work (Graph CNN) model from the recent CVPR paper
“3D Handshape and Pose Estimation from a Single RGB
Image”[2]. This model was trained on the paper’s corre-
sponding dataset of 375,000 synthetic hand RGB images,
which also included 3D ground truth hand meshes and 3D
ground truth joint locations. This model successfully esti-
mates the 21 keypoints of the hand. For our application,
we choose to we look at the predicted pixel coordinates in
2D space on just the thumb tip and index finger tip key-
points, as these will be most useful in computer control
tasks like scrolling and zooming. To evaluate our real-time
Hand Tracking Pipeline, we developed a novel test dataset
of hand labeled images of our own hands performing dif-
ferent sequential motions. We explored different prepro-
cessing steps to improve the performance of our hand pose
estimation model, including segmenting and cropping the
image on the hand as well as performing facial removal,
and the efficacy of these preprocessing techniques are eval-
uated.

1.2. Dataset

For our hand pose estimation model, we utilized the
Hand Graph Convolutional Neural Network model from the
recent CVPR paper “3D Handshape and Pose Estimation
from a Single RGB Image”. As part of the paper, the authors
generated a novel dataset of 375,000 synthetic hand RGB
images and their 3D ground truth meshes and 3D ground
truth joint locations which they trained the model on. Thus,
for our project we utilize the paper’s corresponding dataset
of 375,00 synthetic hand RGB images and their 3D ground
truth meshes and 3D ground truth joint locations. The Hand
Graph Convolutional Neural Network model is trained on
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Figure 1: Example of hand-labeled dataset

Figure 2: Example of hand-labeled dataset

Figure 3: Example of hand-labeled dataset

315,000 of these images and validated on 60,000 of these
images. To fully explore the pose estimation space, the im-
ages in the dataset are made up of 500 common hand ges-
tures and 1000 unique camera viewpoints. The dataset also
simulates real word diversity with 30 different lightings and
five skin colors. In addition, we created three novel hand-
labeled datasets of images of our own hands to test and fine-
tune our model. We created a novel evaluation dataset of 50
images of our own hands in different poses in order to evalu-
ation the performance of our hand pose estimation pipeline.
In addition, we created a second hand-labeled small training
set of 50 images of our own hands in order to explore fine-
tuning our model. To evaluate the smoothing of our Kalman
filter, we created a third hand-labeled dataset of 100 sequen-
tial images of one of our hands performing a sequential fluid
motions. We refer to this dataset as our ”Sequential Motion”
hand-labeled evaluation dataset.

1.3. Evaluation Method

We evaluate the performance of our Hand Pose Estima-
tion model by utilizing the the average and median squared
pixel error between the predicted and actual coordinates on
a our novel hand-labeled test dataset. We evaluated the abil-
ity of the model to perform in real-time by measuring the
amount of time it takes to run an inference step on an image.
It is important to note that our Kalman filter was evaluated
on a hand-labeled dataset of sequential images of one of
our teammates hands performing a series of fluid motions
to gain more insight into its noise reduction performance.
In addition, the sequential image dataset was used to eval-
uate the real-time performance of the full tracking pipeline
at different simulated framerates.

1.4. Expected Results

We expect to see improvements in the average and me-
dian squared pixel error of the Hand Graph CNN pose es-
timation by preprocessing real-time image inputs by seg-
menting and cropping on a subject’s hands. In turn, we ex-
pect to see improvements in the Hand Graph CNN model
after fine-tuning it by training on images of our own hands.
We anticipate that utilizing a Kalman filter will reduce noise
in hand detection in our end-to-end real time hand tracking
pipeline, as well as help fill in the inference time gaps to
improve tracking speed. We expect our hand pose estima-
tion model and tracking pipeline to struggle when hands are
occluded, small relative to the background, or other objects
distract the model such as human faces.

2. Related Work
One useful reference was the recent CVPR paper “Hand

Pose Estimation: A Survey” [1]. This paper explains the
hand pose estimation problem in detail as well as a number
of approaches to solving this problem. The paper introduces
several hand pose estimation methods we are interested in
using as a baseline including detection and regression, as
well as RGB based methods without depth maps. We also
plan to examine papers like “Moving Object Tracking Us-
ing Kalman Filter” [3] which details methods for object
tracking using a Kalman filter, which may help to reduce
noise and outliers in our hand tracking pipeline. Finally, we
also learned from the “GANerated Hands for Real-Time 3D
Hand Tracking from Monocular RGB” paper [4] in which
hand pose models which performed well on this problem.

3. Technical Approach Hand Pose Estimation
3.1. Hand Pose Detection

To perform pose detection of the hand, we utilized an ex-
isting Convolutional Neural Network (CNN) based model
[2] to do hand pose and shape detection from single RGB
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Figure 4: Example of failed pose detection

images like we would be receiving from a webcam. This
method uses a Graph Convolutional Neural Network (Graph
CNN) that detects 21 identified keypoints of a hand, includ-
ing the wrist, palm, and all of the finger joints. It generates a
probability-based heatmap of the hand keypoints, and then
from this generates an estimated 3D hand mesh and the cor-
responding pixel coordinates of the keypoints in both 2D
and 3D. For our project, we use the 2D pixel coordinates
rather than the 3D world-space coordinates, since in our ap-
plication of using pose to do computer control tasks such as
scrolling and zooming, only relative 2D position is impor-
tant. The pose detector model takes as input images with a
resolution of 256x256, so prior to estimation, the raw web-
cam images were rescaled.

3.2. Preprocessing Hand Crop

One failure mode we saw with the hand pose detection
was that when the hand was small relative to features in
the background of the scene, the pose detection performed
poorly after being distracted. This can be seen in Figure 8.

In order to remedy this, we helped focus the attention
of the pose detector model by cropping the received im-
age to only the hand. This was achieved by using an-
other existing CNN optimized to detect bounding boxes of
hands in real-time [5]. After detecting the bounding box,
the estimate was inflated by a 25% margin to accomodate
the whole hand, and rectified so that the dimensions were
square. The square rectification helped prevent stretching
distortions when rescaling to the 256x256 dimensions nec-
essary for the pose estimation model. A full example of the
hand cropping pipeline can be seen in Figure 5.

3.3. Preprocessing Face Removal

Another failure we noticed was that our Hand Pose Es-
timation model would often confuse faces with a subjects’
hands. Thus, we explored preprocessing our images with
OpenCV Haar Cascade Facial Classifier in order to detect
a face and then blur it out in hopes that our model would
focus on the hand rather than on the face itself.

3.4. Model Finetuning

Because the Hand Graph CNN model we utilized was
trained on 375,000 synthetic hand RGB images, we were
interested in seeing if we could improve its accuracy on our
hand-labeled test set and also its performance in tracking
by fine-tuning the model on a fine-tuning dataset of images
of our own hands. Thus, we created a second hand-labeled
finetuning dataset with images of all three of our hands and
wrote a fine-tuning script to fine-tune our trained model on
this dataset. Our fine-tuning dataset had approximately 50
images and we fine-tuned for 1 epoch with a learning rate
of 0.0001.

4. Technical Approach Hand Tracking

4.1. Bounding Box based Interpolation

Because of the relatively slow inference time of the hand
pose estimation CNN model (approximately 0.5 seconds on
CPU), this is only fast enough to support a 2 Hz frame
rate (Table 3), which is well below the threshold needed
for real-time performance. In order to mitigate this, we
used heuristics to interpolate pose estimates between avail-
able CNN predictions, effectively boosting the pipeline’s
frame rate. This was achieved by switching to a multi-
threaded approach, with the pose estimation CNN running
in its own thread. When new CNN estimates were avail-
able, the pipeline used those, but in between inferences, the
pipeline used a bounding box based heuristic. Since the
hand crop bounding box inference time was much faster
(approximately 23 Hz on CPU, Table 3), these estimates
were used to create an approximate motion vector by calcu-
lating the difference between hand bounding box centroids
on subsequent frames. This motion vector was added to the
previous CNN pose estimate to effectively interpolate be-
tween subsequent predictions.

4.2. Kalman Filter

Given our CNN is not perfect, applying a Kalman filter
here is a useful exercise to increase the confidence we have
in given predictions as hand movements transition between
each frame. When designing it we had to make a number of
assumptions for the transition, covariance, noise, jacobian,
and error matrices. We defined the expected transition as
the movement from the bounding box. We decided to model
our expected noise and error matrices after the kalman filter
defined in class. We assume our CNN is essentially noise,
so the jacobian matrix becomes the identity matrix. Lastly,
our covariance model we decided to simplify and have it
be the mean squared error for x and y. Because of these
assumptions, we do not expect our Kalman filter to work
perfectly in rejecting outliers, but we anticipate to see some
improvement utilizing the filter over the baseline in reduc-
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(a) Detected hand crop (b) Detected pose skeleton on hand crop (c) Detected fingertips on hand crop

Figure 5: Example pose detection using bounding box crops

ing noise which is particularly important in real time set-
tings like this one.

4.3. Outlier Rejection

Another method of smoothing out the noisy CNN pose
estimates was to apply a heuristic to reject obvious outliers.
Occasionally, the CNN pose estimate was wildly outside of
where it should be. To detect these cases, the centroid of the
current CNN pose estimate keypoints was calculated, and
checked to make sure that it is within the latest hand crop
bounding box. If not, this most recent pose estimate was
thrown out, and the next pose was calculating by perform-
ing another step of the previously mentioned bounding box
interpolation from the previous good CNN pose estimate.

4.4. Hand Labeled Evaluation Dataset

To quantitatively evaluate our methods, we created a
small (approx. 50 images) hand-labeled dataset of images
of our own hands from a webcam. This images were labeled
with the pixel coordinates of the thumb tip and index finger
tip, which are two of the 21 keypoints detected by the hand
pose CNN model and are particularly relevant to scrolling
and zooming motions. Evaluation was done by computing
the squared pixel error between the predicted thumb and
index finger tip locations and the ground truth labels. To
evaluate the smoothing of our Kalman filter, we created a
second hand-labeled evaluation dataset (approx. 100 im-
ages) of sequential images of one of our hands performing
fluid motions. We refer to this dataset as our ”Sequential
Motion” hand-labeled evaluation dataset.

5. Demonstration Video

The following video shows a demonstration of our Hand
Pose Estimation and Tracking pipeline with mapped mouse
movements. As you can see in the video, the user is using
her hand to guide the mouse to the ”games” folder than the
”analysis” folder. The 21 predicted coordinates of our Hand

Pose Estimation model are mapped directly onto the hand in
the webcam forming a skeleton overlay on the hand.
Link: https://www.youtube.com/watch?v=LMQqcNgktmA

6. Quantitative Results
The following tables below detail our results.
In addition to the hand pose estimation model error, we

also evaluated the performance of the multi-threaded inter-
polation techniques. To do this, we recorded a sequence

Table 1: Hand Pose Estimation Model Squared Pixel Error

Thumb Mean SE Median SE

Hand Graph CNN 4155.05 721.33
CNN + Face Removal 10372.14 6417.32
CNN + Hand Crop 1222.33 12.38
CNN + Hand Crop + Finetune 6715.368 53.42
Index Finger

Hand Graph CNN 3596.83 1395.97
CNN + Face Removal 9168.30 6206.55
CNN + Hand Crop 1686.97 13.46
CNN + Hand Crop + Finetune 6777.71 28.39

Table 2: Hand Pose Estimation Model Squared Pixel Error
for Sequential Motion Hand-labeled Evaluation Set

Thumb Mean SE Median SE

Hand Graph CNN 18295.56 27185.41
CNN + Hand Crop 2110.13 22.47
CNN + Kalman 1921.71 145.561

Index Finger

Hand Graph CNN 19094.28 11341.70
CNN + Hand Crop 1265.46 36.43
CNN + Kalman 6530.20 3587.03
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of 100 frames in which the index fingertip keypoint lo-
cation was hand annotated. Then, we ran this image se-
quence through the image pipeline at different simulated
frame rates (3, 10, and 30 Hz) to evaluate the tradeoff be-
tween accuracy and real-time performance. These frame
rates were simulated for the pose estimation CNN only, the
pose estimation with bounding box interpolation, and the
pose estimation with bounding box interpolation and out-
lier rejection via the pose validity check. This can be seen
in Figures 9, 10, and 11.

6.1. Quantitative Analysis

The model accuracy results can be seen in Table 1. This
showed that the CNN + Hand Cropping outperformed both
the vanilla Hand Graph CNN and the CNN + Face Removal
methods, achieving near-perfect accuracy in the majority of
cases. However, there were a few outliers that had very
large errors, as can be seen in the difference between the
median and mean error over the evaluation dataset. The
presence of these outliers made the outlier rejection tech-
nique useful in the full hand tracking pipleine. It makes
sense that the Hand Graph CNN with Hand segmentation
and cropping performed best because it provided the pose
estimation CNN with a more close up image of the subject’s
hand with minimal background interference.

Although one would expect that removing subject’s face
might help the pose estimation CNN model focus more on
the hand and hence lead to improved performance of our
tracking pipeline, we found that it actually performed the
worse. We suspect this is because in many instances the
hand was either covering or very close to a subject’s face
leading the face removal process to remove part of the hand
with it thus leading to reduced performance.

We were also interested in seeing if we could achieve
further improvements by fine-tuning our best model on a
small hand-labelled fine-tuning set of images of our own
hands. We found that while fine-tuning also lead to a com-
paratively low median error to our best model, it did not lead
to further improvement in the mean SE. We believe this is
due to the noise in the labels, as we labelled our small train-
ing set ourselves and the labels that we put on the thumb
and index finger may not have been perfectly accurate lead-
ing to the model not learning the best information during
the fine-tuning process. We believe with better labelled im-
ages fine-tuning could be a very promising avenue to further

Table 3: Mean Inference Time (CPU)

Avg Time (s)

Hand Graph CNN 0.539
Hand Cropping 0.043
Face Removal 0.071

improve model performance.
In order to evaluate the noise reduction and smoothing

performance of our Kalman filter, we ran it on our Sequen-
tial Motion Hand-labelled Evaluation set (our second evalu-
ation dataset). Unlike the evaluation dataset used in Table 1,
the images in this dataset are sequential frames of fluid hand
motions. To provide comparison points, we re-ran our Hand
Graph CNN baseline and our best model CNN + Hand Crop
on this sequential motion dataset in order to get comparison
points to our Kalman filter. It is important to note that for
Mean and Median SE values for all our models are higher
when run on this dataset due to lower camera quality than
our original evaluation dataset (images taken on a different
camera than our other evaluation set). Looking at Table 2,
we see that the Kalman filter appears to be able to success-
fully reduce outliers when predicting the thumb coordinate.
We see this as the utilization of the Kalman filter results in
the lowest Mean SE of the three models for the thumb on
the sequential motion evaluation set. For the index finger,
the Kalman Filter is still able to lower the Mean SE and the
Median SE over the baseline Hand Graph CNN, however,
the CNN Model with the Hand Crop still performs better.
It makes sense that our Kalman filter did not perform per-
fectly as in order to implement it we had to make several
assumptions about the noise and state. Overall, it is excit-
ing to see that despite these assumptions we were able to
see a general decrease in noise over the baseline.

Additionally, the inference time was measured, as seen
in Table 3. This was important, since the goal is to run this
model in near real-time to perform scrolling and zooming
tasks on a computer with a minimum of lag. The infer-
ence time for the individual models can be seen in Table
3. As can be seen, the majority of the time is taken by the
pose detection CNN model, which takes an average of ap-
proximately 0.5 seconds to run on an image frame. This
translates to a maximum of 2 Hz possible, which is slower
than needed to perform in real time. One of the mitigat-
ing techniques for this included moving to a multi-threaded
approach with the bounding box interpolation heuristic, as
described in the technical approach.

Finally, the index finger keypoint error versus time was
plotted for several simulated framerates (3, 10, and 30
Hz) to evaluate the performance of the full multi-threaded
pipeline. These can be seen in Figures 9, 10, and 11.
These plots demonstrate that the error increases with in-
creasing simulated frame rate, which is expected as the in-
ference time of the CNN pose estimation (2 Hz) and the
hand bounding box interpolation (23 Hz) start to fall behind
the frame rate. These plots also quantitatively demonstrate
the efficacy of the hand bounding box interpolation heuris-
tic, as it helps to “fill in the gaps” pose estimates needed
between available hand pose CNN predictions. In addition,
it shows that the outlier rejection heuristic also had a small
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Figure 6: Example of good pose estimation

Figure 7: Example of fail on pinch

but notable effect in reducing the error, seen most clearly in
the 10 Hz plot. The effect of this outlier rejection also tends
to be sequence dependent, since if the lighting conditions
produce especially bad CNN pose estimates, it will have a
stronger effect.

7. Qualitative Results and Analysis
Looking at our quantiative results, we were interested in

seeing which images and poses influenced our mean and
median square error. Analyzing our outputs by drawing the
skeleton of the 21 predicted joints directly on our evalua-
tion set, we found that our models generally performed best
on clear images of the hand, close to the camera as shown
in Figure 6. This makes sense as it gives the model a clear
view of the hand that is most similar to the training dataset.
In addition, we found that almost all our models struggled
with complex hand movements such as pinching and point-
ing at an angle as shown in Figure 7. We believe that we
could further improve the performance of model on com-
plex hand movements with further fine-tuning on a larger
hand-labelled dataset of complex hand movements.

When utilizing the Kalman filter, we found that though
the predicted positions were often slightly off for most
images, the transition between each state became signifi-
cantly smoother. This is seen in Figure 8, where the green
line on the image is the live kalman filter prediction of the
thumb’s path over several frames, and the blue line is the
best prediction from the CNN + Hand Crop model of the

Figure 8: Kalman filter vs CNN + Hand Crop

thumb’s path in real time over several frames. During this
sequence of frames, the user makes a small, short wave at
the camera moving his hand from left to right and back
without moving up or down. The blue line which does
not use the Kalman filter shows a path that is significantly
more noisy. Predicting the thumb’s path as going up,
down,out of the frame, and back. The green path produced
by the Kalman filter is significantly less noisy, showing
the thumb’s movement more accurately moving across a
small distance from left to right. Thus, the Kalman filter’s
resulting smoother state transition makes it very useful for
our use case of utilizing our Hand Pose Estimation and
Tracking pipeline to move a mouse for those with fine
motor control difficulties.

8. Conclusion & Future Work

We have successfully built and end-to-end Hand Pose
Estimation and Tracking pipeline with mouse move-
ment emulation while experimenting with different pre-
processing, fine-tuning, interpolation, and noise reduction
tehcniques. Our hand tracking pipeline performs well on
real-time RGB webcam data, up to a speed of approxi-
mately 15 Hz which is suitable for most applications. The
accuracy of the hand pose estimation was significantly im-
proved by using a separate hand bounding box CNN model
as a preprocessing crop step. Running the pipeline on a lap-
top CPU causes the inference time for the hand pose CNN
to be too slow on its own, but using the multi-threaded ap-
proach with interpolation heuristics such as hand bounding
box movement significantly improved the pipeline’s real-
time performance. Noisy hand pose CNN estimates con-
tinued to be an issue, though, but outliers were suppressed
using basic outlier suppression heuristics using a bounding
box consistency check, and the Kalman filter also showed
some promise in this regard. For future work, improve-
ment could be made in the Kalman filter tuning, especially
in the model assumptions for the transition matrix and co-
variances. Finally, it would also be interesting to assess the
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performance of the model on a powerful, cloud-based GPU,
as this may make the pose estimation CNN viable on its own
in a real-time environment even without the bounding box
interpolation heuristics.

9. GitHub Code Repository
Our project code can be found at the following GitHub

repository:
https://github.com/nmofid1996/

CS231aFinalProject
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(a) Frame rate = 3 Hz (b) Frame rate = 10 Hz (c) Frame rate = 30 Hz

Figure 9: Index finger error vs. time for pose estimation CNN only (no interpolation)

(a) Frame rate = 3 Hz (b) Frame rate = 10 Hz (c) Frame rate = 30 Hz

Figure 10: Index finger error for pose estimation CNN + hand bounding box interpolation

(a) Frame rate = 3 Hz (b) Frame rate = 10 Hz (c) Frame rate = 30 Hz

Figure 11: Index finger error for pose estimation CNN + hand bounding box interpolation + outlier rejection
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