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Abstract

Vision-based tactile sensor has been widely used since
the robot requires rich feedback for great performance on
manipulation task. The tactile sensor with fisheye lens can
achieve small form factor with wide field of view. For such
sensor, the 3D reconstruction of the surface of gel from the
single image is critical problem. In this paper, I proposed
three different approach for 3D reconstruction of the tactile
sensor’s surface: 1)end-to-end network approach from 3D
pose of the object, 2)reconstruction with 3D pointcloud, and
3) 3D reconstruction from the 3D-printed indicator with
least square method by using nonlinear conversion matrix
for image-3D position.

1. Introduction
Tactile sensing has been contributing to increase robot

dexterity. Especially, rich tactile feedback from sensor is es-
sential for robust object manipulation and control. Recently,
vision-based tactile sensors have been outperformed previ-
ous sensors due to high resolution. High resolution vision
based sensors provides a solution to this problem by detect-
ing both shear and normal forces [11], controlling grasping
motion [17], or adjusting grasp [8].

However, most vision-based tactile sensors are expen-
sive, bulky, and are limited on the 2D shape. They shares
the similar design approach: most vision-based sensors ob-
serve a image of the deformed surface through the clear gel
with camera. Vision-based tactile sensor such as Gelsight,
Gelslim, or DIGIT has high resolution because of camera
but flat surface limits the application in manipulation tasks
[6, 7, 10]. Therefore, the tactile sensors with 3D curved
surface design is essential for various robot manipulations.

Camera with fisheye lens can be one of the solution for
designing 3D-curved tactile sensor for robot manipulation.
Fisheye lens with wide field of view(FOV) allows to detect
3D surface more efficiently. From our lab, we proposed
the vision-based tactile senor with fisheye lens 1. Monocu-
lar camera with mounted gel enables to get the area contact

Figure 1. The tactile sensor with fisheye lens(upper image) and
one of the proposed approach for 3D reconstruction of sensor sur-
face(lower image).

from soft surface of the gel, which is covered with reflective
surface. With the right illumination on the sensor the tactile
feedback is available with single image. From the high-
resolution image, we can extract corresponding 3D surface
of the sensor. However, major challenge with the fisheye
lens is 3D reconstruction of the surface from the 2D im-
age. Scaramuzza proposed 2d calibration for omnidirec-
tional camera [16]. Indeed we can reconstruct 3D surface
from the fisheye lens from the 2d calibration and proposed
3D reconstruction method from the class. However, We can
reconstruct 3D surface of the sensor from the fisheye image
directly without using traditional pinhole camera model or
Scaramuzza’s model. Furthermore, we can fix the surface of
the tactile sensor and align the center of the hemisphirical-
shaped sensor with the fisheye lens. These constraints will
allow a new condition for 3D reconstruction and possibly
suggest a more precise result than using traditional tech-
nique.

Therefore, this project aims to reconstruct a 3D surface
of the tactile sensor with fisheye lens camera without us-
ing traditional 3D reconstruction way.
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2. Related Works

3. Problem statement

The main focus on this project is 3D reconstruction of
the tactile surface from single image input. First, we have to
collect the valuable dataset for image-depth pair from given
sensor. Next, based on the collected dataset, I am aiming to
reconstruct the 3D tactile sensor surface.

Tactile sensing has been contributing to increase robot
dexterity. Especially, rich tactile feedback from sensor is
essential for robust object manipulation and control. Vari-
ety of tactile sensors has been developed in many different
approach such as piezoelectricity [18], optics [6], resistance
[5], or capacity [9]. Recently, vision-based tactile sensors
have been outperformed previous sensors due to high res-
olution. High resolution vision based sensors provides a
solution to this problem by detecting both shear and normal
forces [11], controlling grasping motion [17], or adjusting
grasp [8]. However, most vision-based tactile sensors are
expensive, bulky, and are limited on the 2D shape. Vision-
based tactile sensor such as Gelsight, Gelslim, or DIGIT
has high resolution but flat surface limits the application in
manipulation task [6, 7, 10]. The tactile sensors with 3D
curved surface design such as Omnitact [12] allows multi-
directional sensing but too expensive to use on real applica-
tion. Round fingertip sensors from [14] also has 3D shape,
but relatively small resolution comparing to other vision-
based sensors. Therefore, the tactile sensor( 1) with fisheye
lens is able to ensure the high resolution, and detecting ge-
ometrically wide range.

The 3D reconstruction from single image have been
widely proposed [15]. A quadratic model for Lambertian
reflectance under arbitrary illumination conditions, which is
the property that our sensor has, could be helpful to recon-
struct the 3D surface of the tactile sensor [2]. Another possi-
ble approach for 3D reconstruction for tactile sensor can be
the end-to-end reconstruction [10]. This approach has been
widely used for vision-based tactile sensor with acceptable
accuracy. Scaramuzza proposed 2d calibration for omnidi-
rectional camera [16]. This approach is not useful for 3D
reconstruction of gel surface, however, the omnidirectional
camera with fisheye lens can also be parameterized like pin-
hole camera with this appropach.

4. Technical Approach

I proposed three different approach to reconstruct the 3D
surface of the gel surface from single image. The object
of three approaches are: reconstruction of 3D surface from
image with using different property of the tactile sensor.

4.1. 3D reconstruction with end-to-end approach

The first approach for the 3D reconstruction is directly
linking between image from tactile sensor with the 3D pose
of the detected object. Fig. 2 shows the diagram of the
approach. If we only use the same object with known shape,
the network can analyze the difference from the given 3D
pose. The output of network can be defined by

Network Output =
[
x, y, z, q0, q1, q2, q3

]
∈ R7 (1)

Where [q0, q1, q2, q3] is quarternion of the poked object.
Furtheremore, as depicted in the Fig. 2 the tactile sensor al-
lows to get multiple images from one observation by chang-
ing the position of LED with maintaining cyclic symmetry.
For the approach, I used 3 symmetric - LED position with
different color - Red, Green, and Blue. The image has been
cropped and resized into 256× 256× 3 size.

Since we are using multiple images(3 images
for this case), I used 3D convolutional layer to
get the feature. I modulized the network struc-
ture with ’block’: each block has two continu-
ous series of (Conv3D,Batchnorm3D,ReLU).
The network consists of 8 ’block’s with the size of
(32, 64, 128, 256, 512, 512, 512, 512), respectively. Each
’block’ has same kernel size 3 and stride as 2. After pass
the series of block network, I flattened the network with
two linear layer that has input channel as (165888, 100),
respectively. Finally, after it pass the ReLU and sigmoid
layer, the result has been directly matched with the 3D pose
of the poked object. we detect the 3D pose of the poked
object from Franka Emika arm with calculated position of
end-effector.

4.2. 3D reconstruction from 3D pointcloud

Next approach I proposed was 3D reconstruction from
the 3D pointcloud. Since the shape of tactile sensor is hemi-
spherical, we have utilize multiple depth sensor to observe
the whole pointcloud of the tactile sensor’s surface. I obtain
the pointcloud from 3 same ToF(Time-of-Flight) sensor, Pi-
coFlexx ToF sensor [13]. Tof sensors are mounted on the
3D printed holder as shown in fig. 4. If we correctly trans-
form and match the orientation of each pointcloud, we can
get the 3D pointcloud of tactile sensor’s surface. From these
pointcloud, we can directly estimate the deflection of the
surface of input image. To achieve this, I had to correctly
match the pose of the each ToF sensor. After matching the
origin of the pointcloud correctly, we can estimate the 3D
deflection of the sensor from the pointcloud. We can use
similar network approach proposed in above section with
different output size.
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Figure 2. The Network structure of the first approach.

Figure 3. 3D printed part for pointcloud calibration(left image) and
one of the pointcloud observed from ToF sensor(right image).

Figure 4. Test environment of tactile sensor with 3 same ToF sen-
sors.

4.3. 3D reconstruction from 3D indicator

Camera from fisheye lens have 2D circular image. We
can first get the image gradient and use that gradient for des-
ignated part. In addition, if we construct a sensor that the
light source positioned at infinity, then we can make lam-
bertian surface. Therefore, the fisheye lens calibration can
be easier with three constraint: 1) the observed surface will
have lambertian reflection, 2) the center of the fisheye lens
and the center of the hemisphrical sensor surface align, 3)
the position of 3D surface is fixed when the surface of the

sensor is not deformed. From these assumptions, the fish-
eye lens construction can become easier than using general
omnidirectional calibration approach from Scaramuzza.

To use above method, I tried to get the information of
the sensor surface from 3D printed indicator as shown in
Fig. 5. The indicator has hemispherical shape with the same
with of the sensor. Therefore, we can directly attach the
indicator with the tactile sensor. There are holes with the
same size 6mm with equal angular distance. Since we can
precisely measure the position of each hole, we can get the
information of the hole from the designed CAD file.

Even thought the gel part of the sensor is covered with
the reflective surface, we can still observe the lights from
outside when we turn off the LED lights installed inside
of the sensor. From ambient light source from outside, the
tactile sensor can detect the hole with different deflection
ratio. By observing deflection ratio of each holes with right
position, we can estimate the deflection of each pixel of the
input image.

Figure 5. The CAD design of 3D indicator(left image) and the
picture of the sensor with 3D indicator attached (right image).

5. Experiment Results
5.1. 3D reconstruction with end-to-end approach

The dataset for the image-position pair has been col-
lected. The image is corresponded to the object that poked
the sensor. Fig.6 shows the example of the image data.
However, the data collection step is too slow and the cur-
rent dataset size is about 1500 image-position pair. The
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Figure 6. The image from captured dataset. The object is shown
in right-middle part of the image.

train loss and validation loss of the network I proposed was
93.2370, and 57.0529, respectively.

Apparently, the train/validation loss are huge. Most error
comes from the lack of the dataset. Considering the size
of the input image and output class, we need to collect the
data more than 10,000. However, because of the limitation
of the collection step, I couldn’t get the appropriate dataset
for the training the network. This approach will become
useful after I collect the more data from the sensor. The
collection procedure of the data requires human input, e.g.
the person need to push the each record button while the
robot and sensor measures the input image and output pose
of the object. If we simplify and automize the collection
procedure, I might be more easier to get the dataset.

5.2. 3D reconstruction from 3D pointcloud

Figure 7. Captured pointcloud data from three different depth sen-
sor.

From the experiment, we can collect corresponding 3D
pointcloud dataset for 2D fisheye image. However, the
pointcloud data does not have same origin from 3 ToF sen-
sor. Fig. 7 shows raw image with erroneously aligned ori-

gin. we can clearly see that the origin of the pointcloud has
small bias.

To solve this problem, I designed the 3D object with mul-
tiple sphere as shown in Fig. 3. I tried to get the center of
sphere from each pointcloud sensor. Since we know the ra-
dius of each sphere, we can measure the centers of spheres
by subtracting known radius vector from the center of the
observed circle from the depth sensor image. There was
occlusion problem with some spheres,( you can see in the
right image in Fig. 3, the last second sphere from upper left
corner makes some occlusion.) so I manually selected the
center of sphere for that case.

From given set of the center of sphere in each pointcloud
frame, I tried to match those set by using ICP(Iterative clos-
est Point) algorithm [3]. If there is two pointcloud set (p, q)
and if we want to find the appropriate rotation matrix R and
displacement t, we can find

p =

x1y1
z1

 = R

x2y2
z2

+ t = Rq + t

such that

min
R

E =

n∑
i=1

‖Rpi + t− qi‖

If we find R and t such that minimizes above error, we
can get the appropriate rotation matrix between two point-
cloud set. Since I have three different pointcloud set, I tried
to get the two rotation matrix R12, R13. Fig. 8 shows the
result of pointcloud matching by using ICP algorithm. I get
the following rotation matrix in homogeneous form:

R12 =


1.0000 0.0013 −0.0063 0.0071
−0.0011 0.9997 0.0229 −0.0163
0.0063 −0.0229 0.9997 −0.0038

0 0 0 1



R13 =


0.9987 −0.0335 0.0390 0.0095
0.0328 0.9993 0.0174 −0.0034
−0.0396 −0.0161 0.9991 −0.0048

0 0 0 1


From above result, I could match the pointcloud cor-

rectly (see Fig. 9). The next step I will try to do is training
the network between 3D pointcloud and the image. How-
ever, because of the lack of the GPU resource, there was
huge limitation on training the network with such huge
pointcloud dataset. Since I was doing this method in par-
allel with the first approach, the resource for training this
network become much smaller. I will continue to train the
network if I can secure proper GPU/server for training.
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Figure 8. The result of pointcloud matching by using ICP algo-
rithm.

Figure 9. The result of poitcloud after matching the pointcloud set
correctly with the ICP algorithm. By comparing the result with the
Figure 7, we can notice that the algorithm works well.

5.3. 3D reconstruction from 3D indicator

This part has been accomplished after presentation.
From the image observed from the tactile sensor attached

to the 3D indicator, I tried to get the information of the ob-
served hole from the picture. First, I get the edge and gra-
dient of the image by calculating local gradient of image
with Canny method [4]. Then from the detected edge, I cal-
culated the size and the orientation of the ellipse from the
image by using Hough Circle Transform [1]. From these
procedure, I could get the locus of the hole observed from
the fisheye lens camera as shown in the Fig. 10.

Since we already know the corresponding 3D coordinate
of these detected holes from the CAD file, we can directly
match the 3D position of the tactile sensor with the given

Figure 10. The result of hough transform for ellipse detection on
the image from tactile sensor with 3D indicator.

locus of the ellipse. If we set the locus set from the image
and corresponding 3D position as

ptimg =


u1 − uc v1 − vc
u2 − uc v2 − vc
...

un − uc vn − vc

 ∈ Rn×2 (2)

pt3d,real =


X1 Y1 Z1

X2 Y2 Z2

...
Xn Yn Zn

 ∈ Rn×3 (3)

We can match these point sets by using unique nonlinear
transformation matrix given that the surface of the gel has
the hemispherical shape.XY

Z

 =

dsinα sinθdsinα cosθ
dcosα

 (4)

Where d is the radius of the sensor. Since we know the
corresponding 3D position for the locus of observed ellipse,
we can parameterize the α, β by following:

α = a0 + a1r + a2r
2 + ...+ akr

k, (5)

θ = βθ0 = (b0 + b1r + b2r
2 + ...+ bkr

k)θ0 (6)

Where

r =
√

(u− uc)2 + (v − vc)2, (7)

θ0 = tan−1(
v − vc
u− uc

) (8)

Where uc, vc is center of the image, (u, v) is correspond-
ing pixel value from the image, with appropriate order k.
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Then from the least square method, we can get the coef-
ficient ai, bi, i = 0, ...k from solving the following:



1 r1 ... rk1 0 , , , 0
1 r2 ... rk2 0 , , , 0

... , , ,
1 rN ... rkN 0 , , , 0
0 , , , 0 1 r1 ... rk1
0 , , , 0 1 r2 ... rk2

... , , ,
0 , , , 0 1 rN ... rkN





a0
a1
...
ak
b0
...
bk


=



α1

α2

...
αN

β1
...
βN


(9)

From above matrix, we can get the appropriate coeffi-
cient for α, β. By using above, I could get the coefficient
with k = 5, N = 300 :



a0
a1
...
a5
b0
...
b5


=



−0.5495
10.8267
−42.4161
73.0804
−49.9187
10.0703
2.1714
−13.3646
−8.2026
92.3806
−125.4496
51.3604


From above coeffiecient with estimated parameters for

the transformation, we could get the Fig. 11 as the result
of 3D reconstruction. We can notice that the 1st quadrant
is accurate since we only accurately matched these param-
eters. We can interprete the other points from the dummy
pixel, since we only have to convert the pixel inside the cir-
cular lens part, but the plot draws all the pixel from 0 to
maximum length of the image.

6. Conclusion
This paper proposed three different approach to recon-

struct the 3D surface of the tactile sensor with fisheye lens
from single image. The first approach, the end-to-end ap-
proch from the 3D pose of the object, shows the huge loss
becaus of the small dataset( 1500). For the next approach,
the 3D reconstruction from the 3D pointcloud, I was suc-
cessfully calibrate the pointcloud from the three different
ToF sensor by using ICP algorithm. In the future, I will train
the network between image and 3D pointclouds. Finally, I
proposed the 3D reconstruction from the 3D-printed indi-
cator. By using the position of the ellipse given by Hough
transform, I could match the locus of the ellipse/hole on the
image pixel with the 3D position from the surface of the

Figure 11. The 3D reconstruction by using least square method.

sensor. Finally, the 3D reconstruction has been performed
with some noise. In the future, I will reduce the noise for the
final approach by getting right coefficient for the nonlinear
conversion matrix of the image-3D position.
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