
Go Board Reconstruction from a Single Image

Amy Zhang
ayzhang@stanford.edu

Link to project code:

https://drive.google.com/drive/folders/11p79o3kmwenHBj1TZNZJyLRtmLcKIX4G?usp=sharing

Figure 1. Traditional Go Game Played on a 19x19 Grid

Abstract

The game of Go is generally played on a 19x19 grid
board and has the potential to involve up to 361 individ-
ually placed stones. In order to score a game of Go, each of
these stones must be individually counted and treated using
the scoring rules. This paper introduces an application of
Computer Vision techniques to create a digital reconstruc-
tion of a Go board so that players can upload their boards
to virtual scoring programs. The goal is to reconstruct both
the game board and the stone placement from only a single
input image of the Go board, instead of requiring a sepa-
rate calibration image of an empty board. The performance
of this approach is compared to the ground truth board and
stone positions of seven input images. Analysis of these im-
ages shows that this approach is exceptionally accurate in
reconstructing boards in ideal lighting conditions but not
generalizable to boards in extreme lighting conditions.

1. Introduction

The game of Go is widely regarded as the oldest board
game that is still played in the present day. The game is
played using black and white stones on a grid board where
the goal of the two players is to surround more territory
than their opponent. The winner is determined after scoring
the board. There are two main ways in which a Go board
can be scored: area scoring and territory scoring. Both sets
of scoring rules involve the two players manually counting
their stones and captured spaces and removing dead stones.
This process is generally quite time consuming, especially
when playing on the standard 19x19 board.

This paper explores how to apply computer vision tech-
niques to reconstruct a Go board. This digital reconstruc-
tion would then allow players to feed their board data into
an automatic Go scoring program (like Crazy Stone [1]),
instead of having to spend time manually scoring the game.
The goal of this paper is to take an input image of a Go
board (see example input in Figure 1) and simultaneously
reconstruct the position of the grid and the stones. The re-
construction pipeline can be broken down into two parts:
board recognition and stone recognition. Previous works on
the topic of Go board reconstruction include work done by
Musil [2], Srisuphab et al. [3], and Corsolini et al. [4]. All
of these approaches, however, assume an input of at least
two images: one of the empty board for grid detection and
another of the board in the same position but now covered
with stones. This paper will be adapting these approaches
to a single image reconstruction approach.

2. Related Work

This section will focus mainly on the three works men-
tioned above: Tomas Musil’s ”Optical Game Position
Recognition in the Board Game of Go”, Corsolini et al.’s ”A
New Approach to an Old Problem: the Reconstruction of a
Go Game through a Series of Photographs.” and Srisuphab
et al.’s ”An Application for the Game of Go: Automatic
Live Go Recording and Searchable Go Database”.

The approach by Musil uses filtering, Hough transforms

1



and RANSAC to detect an empty grid and K-means cluster-
ing to detect stones. The implementation first converts the
image to gray-scale and then uses a Laplace operator and
high-pass filter to preprocess the image. The image is then
passed through a Hough transform and another high-pass
filter. Then RANSAC is used to find the two sets of parallel
lines that determine the grid. Then RANSAC is used again
to find the candidate diagonals of the grid which are then
used to compute the positions of the corners of the grid.
The candidate diagonals each generate a candidate board
and then the best board is selected. Next is the stone recon-
struction step. Since the intersection of the grid-lines are
already known, this approach takes the average color in a
5x5 pixel square around each intersection and uses kMeans
clustering to cluster the colors into 3 clusters (black, empty,
and white). Then each stone is assigned to a cluster and
their color is then known. This is the approach that will be
used for our implementation of stone recognition as it takes
into account variability in lighting conditions since it does
not involve setting hard boundaries or RGB thresholds.

Srisuphab et al. use Canny edge detection, Hough trans-
forms and rectification to detect the empty grid and simple
RGB averages to detect stones. This approach first uses
a Canny edge detector described by J.F. Canny [5]. Then
a Hough transform is applied to better refine the detected
edges. This results in well-defined lines; however, there
may still be some errors in this reconstructed board. To
fix these errors, this approach performs a rectification step
where the hypothesized intersections are compared against
a virtually generated board. To reconstruct the stones,
Srisuphab et al. use a circular boundary around each inter-
section and calculate the average color value of each bound-
ary. It then uses the HSV color model to determine whether
each boundary is white, black or empty.

Corsolini et al. use Hough transforms to detect the
empty grid and the difference between game images to de-
tect stones. This approach uses two runs of Hough trans-
forms and error checking to reconstruct the grid. This ap-
proach tracks a game starting from an image of an empty
board and has input images as each stone is placed. It is
therefore able to use a very quick approach of calculating
the difference between consecutive images to reconstruct
the stones.

Besides the academic literature surrounding the problem
of Go board reconstruction, there are also public implemen-
tations such as Kifu Snap and Imago which are capable of
Go board reconstruction [6] [7]. As of June 2020, Kifu
Snap can be used online to reconstruct most single images
of boards. Imago, the public implementation of Musil’s ap-
proach, is capable of analyzing a whole game with a 76%
success rate and takes 30 seconds per photo to perform the
analysis [3]. A common next step from board recogni-
tion is tracking an entire game of Go from a video of the

game board. Programs like Igoki and the implementation
by Srisuphab et al. are capable of performing such video
tracking.

3. Approach

3.1. Determining the Pipeline Structure

As mentioned in the introduction, the overall reconstruc-
tion pipeline can be broken down into two main pipelines:
grid reconstruction and stone reconstruction. Given that the
input image has both grid and stone data, there was flexibil-
ity in choosing which pipeline to begin with.

The process of first generating the stone reconstruction
and then generating the grid reconstruction was explored
first. An initial approach to this problem was to use circu-
lar Hough transforms and color thresholding to detect the
circular stones on the board. The detected stones could
then also potentially be used to aid in grid reconstruction
since all the stones must be placed at the intersections of
grid lines.

This approach was not successful due to several factors.
The first factor was that the surface of the stones are non-
lambertian and therefore, even with color thresholding, it
was difficult for the circular Hough transform to correctly
identify the boundaries of stones. The second factor was
that the images of the Go boards often had very different
intensities and warmth values. This made it difficult to gen-
eralize an approach that could always detect stones when for
example, a white stone in more yellow lighting might blend
in considerably with the wooden board. The third factor
was the human error involved with placing the stones. Of-
ten the stones were placed significantly off-center from the
actual intersection of grid lines and as a result, the idea that
the stones could then be used to aid in grid reconstruction
would not have been feasible. As a result of these factors,
the final reconstruction pipeline first tackles grid line recon-
struction and uses that to aid in stone reconstruction.

3.2. Overview

The reconstruction pipeline begins with an image pre-
processing step where the image is thresholded and the ac-
tual game board is extracted from the image and rectified.
Then the pipeline proceeds with grid reconstruction. The
grid reconstruction is then used to perform the stone recon-
struction step, as all of the stones must at least partially lay
on an intersection of grid lines.

An important note is that this project is operating under
the assumption that all grid lines are at least partially visi-
ble in the image, ie. there are no rows or columns that are
entirely occluded by stones.

2



Figure 2. Example Input Image

3.3. Image Preprocessing

The dataset of images used in this project involve images
of Go boards taken from differing angles and distances (see
Figure 2). As a result, it was necessary to first extract out
the board from the image and rectify it so that the following
reconstruction pipelines could be more generalizable. This
was accomplished by first manually selecting the four cor-
ners of the game board in the given image and using those
four corners to compute a perspective transformation. This
transformation was then applied to the area contained in the
selected four points (ie. the un-rectified board). The result
from this step is a square image of the rectified game board
without any surrounding environment. (This step has been
newly added after the final presentation.)

This rectified image then went through a thresholding
step where any pixels above a set white color threshold
were turned completely white and any pixels below a set
black color threshold where turned completely black. These
thresholds were manually tuned with the white color thresh-
old being [160, 160, 160] and the black threshold being [50,
50, 50]. This step was necessary in order to decrease the
variance of the differing shades of white and black in the
image. As a result of this step, the stones and stone colors
can be much more easily separated out in the later stone de-
tection step. Furthermore, the dark grid lines are also more
apparent for the grid detection step (see Figure 3).

3.4. Grid Reconstruction Approach

Before the image goes through the grid reconstruction
pipeline, it must go through an extra step of processing
where it is converted to grayscale, thresholded again and
blurred. This intensity thresholding step removes any gray
tones that are still present from the wooden board back-
ground by turning them white. This helps reduce noise for
the subsequent line detection step. The intensity threshold
was manually tuned to be 90. In the blurring step, the image
is passed through a Gaussian filter which smooths the im-
age and reduces any Gaussian noise. The width and height

Figure 3. Example Input Image After Image Processing Step

of the Gaussian kernel were manually tuned to be 11x11.
The next step in the grid reconstruction pipeline involves

detecting lines in the image. My original approach had used
Hough transforms and probabilistic Hough transforms to
detect the grid lines on the board; however, both of these
approaches were too sensitive to the lines being partially
occluded by stones. Furthermore, both of these approaches
required the specification of a minimum line length which
was hard to tune given the variety of different line lengths.
I discovered that the FastLineDetector function from
the CV2 library was much more successful at detecting grid
lines and went with this approach instead. Before running
this function, the image is first passed through a Laplacian
edge detector, which uses the second order derivative of the
pixel intensity to detect edges. These edges are then fed
into the FastLineDetector function. This line detector
uses Canny edge detection to detect lines. The first Canny
hysteresis threshold was manually tuned to be 25 and the
second Canny hysteresis threshold was manually tuned to
be 50. These detected lines are then used to estimate the
corners of the grid, which are used in the next step to fill in
the missing coordinates of points defining clustered lines.

Figure 4 illustrates the example input image after this
line detection step. Note that although many of the detected
lines are from the actual grid lines, there are also many lines
that are actually a part of the stones. These lines should not
be counted in the grid reconstruction pipeline. To address
this issue, it was decided that applying clustering to all of
the horizontal and vertical detected lines would be the best
approach. Clustering would allow us to find the 19 most
dominating horizontal lines and 19 most dominating verti-
cal lines which would serve as the grid lines for the board.
This relies on a core assumption that the amount of detected
lines from the grid lines outweigh the number of detected

3



lines from the stones.

Figure 4. Example Input Image After FastLineDetector

Therefore, all of the horizontal and vertical lines are then
extracted from these detected lines and each clustered into
19 clusters. These clusters serve as the 19 horizontal and
19 vertical lines that define the 19x19 grid board. More
specifically, for horizontal lines we run kMeans clustering
to define 19 clusters using the y values associated with the
first point defining each extracted horizontal line. These 19
cluster centers are taken to be the y coordinates for each
of the horizontal lines. The x coordinates of the horizontal
lines are the x coordinates associated with the top right and
top left corners calculated in the previous step. This gives us
all of the 19 horizontal grid lines. For vertical lines, we run
kMeans clustering to define 19 clusters using the x values
associated with the first point defining each extracted verti-
cal line. Similarly to the horizontal lines, these 19 cluster
centers are taken to be the x coordinates of each of the ver-
tical lines. The y coordinates of the vertical lines are the y
coordinates of the top right and bottom right corners. This
gives us all of the 19 vertical grid lines and the grid recon-
struction is now complete as illustrated in Figure 5.

3.5. Stone Reconstruction Approach

The image after the initial image processing step (section
3.3) is used as the input to this recognition pipeline. This
image is then further processed through a color threshold-
ing step that takes any pixel that is neither black nor white
and turns it blue. This ensures that any noise present in the
board due to the wooden texture is eliminated and allows
the stones to be easily distinguished from the board.

The next step involves looking at the pixels within a
given radius surrounding each intersection and is a direct
implementation of the stone recognition pipeline used by
Musil [2]. More specifically, since we know that all valid

Figure 5. Example Input Image After Grid Reconstruction Pipeline

Figure 6. Example Input Image After Color Thresholding

Go stones must be placed at a grid line intersection, we can
use the grid lines that were reconstructed in the previous
step to define and search these intersections for stone data.
Again, there is a certain element of human error that must be
accounted for here. In searching the radius around an inter-
section it could be possible that a stone is just barely placed
over an intersection in which case part of the region may be
empty if the search radius is too large. If the search radius
is too small, the stone estimates are more prone to possible
noise from the board or even grid lines. The search radius
was manually tuned to be 10 pixels. We then aggregate the
pixel data within the 10 pixel radius surrounding each in-
tersection and use kMeans clustering to cluster this pixel
data into three clusters. These three clusters represent black
intersection regions, white intersection regions and empty

4



intersection regions. From kMeans clustering, each inter-
section is now labeled according to its cluster center and the
label (white, black or empty) can be taken to be the stone
data of the board. A major advantage of using clustering is
that no RBG or intensity thresholds had to be tuned so this
approach is much more robust to noise and can handle a va-
riety of lighting conditions. The stone recognition pipeline
is complete, as we now know at which intersections each of
the white stones and black stones are located. The resulting
reconstruction is visualized in Figure 7.

Figure 7. Final Visualized Reconstruction of Example Image

4. Experiment
In order to better mimic a wide range of input images,

the dataset used in this experiment was pulled directly from
Google Images. The dataset consists of seven images of en-
tire Go boards with stones placed on them. As mentioned
previously, a core assumption in this problem is that all grid
lines are at least partially visible so this constraint played
a factor in the dataset. Furthermore, any image with a par-
tially occluded board could not be considered.

4.1. Results

The results from this project are compared to the ground
truth grid lines and stone placement of the depicted game
boards. This algorithm was able to successfully recover
100% of the grid structure for four out of the seven input
images. Of these four images, two images had a 100% ac-
curate stone reconstruction, one image had a 99.4% accu-
rate stone reconstruction (see Figure 7) and the last image
had a 50% accurate stone reconstruction.

The three images that had unsuccessful grid reconstruc-
tions were not counted in the stone reconstruction accuracy
rate as the grid reconstruction was used to reconstruct the

stone placement, so these stone results were not indica-
tive of the actual accuracy of the stone recognition pipeline.
This approach was unable to recover the grid for these three
images due to several factors. The first factor is that even if
a very small portion of the corner of the board is occluded
in the image, the image will end up being warped in the ini-
tial rectification step. This will result in the horizontal and
vertical lines being warped and these lines will therefore
not be picked up by the line detectors (see Figure 8). The
second factor is that some of the boards in the images were
non-lambertian and therefore sometimes had portions that
reflected light. This would result in the grid lines being hid-
den by the reflection and as a result, would go undetected
by the line detectors (see Figure 9). We can see that this
is indeed the issue in Figure 9 as the grid lines on the part
of the board that is not reflecting light were successfully re-
constructed. Figure 9 also illustrates the dependency that
the grid lines have on the correct estimation of the corners
of the grid.

Figure 8. Occluded bottom right corner resulting in warped grid
lines

Figure 9. Reflective upper left corner of board resulting in unde-
tected grid lines

The 99.4% stone reconstruction accuracy rate was due
to the fact that there was one stone that was placed signifi-
cantly off center from the intersection of the grid lines. As
a result, the stone was assigned an empty value instead of
a white value (which was the ground truth) (see Figure 10).

5



This is due to the human error involved with placing the
stones but could be addressed in future work, potentially
with the use of CNNs to learn stone placement patterns.
The 50% stone reconstruction accuracy rate was due to the
fact that this particular input image had very warm light-
ing. As a result, the white stones on the board looked very
yellow and were not picked up in the white thresholding.
The black stones, however, were successfully reconstructed.
This could be addressed in future work with potentially us-
ing clustering to set the white and black thresholds (this
would be more robust to different lighting situations sim-
ilarly to the clustering application in regards to stone recog-
nition).

Figure 10. Upper stone placed significantly off center from inter-
section

Figure 11. Warm lighting making yellow stones go undetected by
white thresholding

5. Conclusion
As with any application of computer vision techniques,

the issue of building in generalizability to extreme lighting

conditions was the main obstacle to building a robust ap-
proach. Despite this obstacle, however, this approach of
thresholding, line detection and clustering was very accu-
rate for well-formed and well-lighted images. These con-
cepts are excellent candidates to address Go board recon-
struction and this approach would serve as a robust founda-
tion for future work into the topic.

As mentioned above, there are two main areas for future
work. The first being building a more robust approach to
extreme lighting conditions. This could be done by using
clustering to generate thresholds, instead of manually set-
ting and tuning thresholds. Furthermore, the issue of grid
lines being covered by reflective areas of the board could be
addressed using simple inference methods that leverage the
portion of the board that is not covered by a reflection. The
second main area for future work is to address the issue of
human error in placing the stones. When a board is manu-
ally scored, it is much easier to discern where a player might
have intended to place his or her stone; however, when this
task is left up to computer vision techniques there needs
to be a more robust approach than just checking the radius
around each intersection. This would be a great problem
to solve using learning based approaches and could involve
using CNNs to learn stone placement patterns.

References
[1] Coulom, Rémi. Crazy Stone, www.remi-

coulom.fr/CrazyStone/.

[2] Musil, Tomas. “Optical Game Position Recognition in
the Board Game of Go.” Charles University in Prague,
2014.

[3] A. Srisuphab, P. Silapachote, T. Chaivanichanan, W.
Ratanapairojkul and W. Porncharoensub, ”An applica-
tion for the game of Go: Automatic live Go recording
and searchable Go database,” TENCON 2012 IEEE
Region 10 Conference, Cebu, Philippines, 2012, pp.
1-6.

[4] Corsolini, Mario and A. Carta. “A New Approach
to an Old Problem: The Reconstruction of a Go
Game through a Series of Photographs.” ArXiv
abs/1508.03269 (2015): n. pag.

[5] J. F. Canny, “A computational approach to edge detec-
tion,” IEEE Transaction on PAMI, vol. 8, no. 6, pp.
679–698, November 1986.

[6] Coulom, Rémi. Kifu-Snap: Automatic Go-Board Im-
age Recognition, www.remi-coulom.fr/kifu-snap/.

[7] Musil, Tomáš. “Imago.” Tomáš Musil,
tomasm.cz/imago.

6


