
Using image registration for computational dolly
zoom

Arjun Dhawan (akdhawan) and Gleb Shevchuk (glebs)

Abstract—In this project, we investigate different methods
for performing computational dolly zoom using image regis-
tration. We define computational zoom as a four step pipeline
consisting of feature selection, feature matching, transforma-
tion, and interpolation. To establish the most effective method
for performing computational dolly zoom on static images,
we examine several options for each step and determine the
combination of techniques that creates the best dolly zoom.
Finally, to test theses approaches, we apply the approaches
on a variety of static images taken at different depths and
analyze the differences between qualitative and quantitative
results on each combination of methods. Our code is located
at https://www.github.com/glebshevchukk/231a zoom

I. INTRODUCTION

We describe a system that, given N pictures captured in a
straight or angled line, outputs a video interpolating between
the frames while controlling parallax between the foreground
and background. This idea is commonly used in-camera with
effects like the dolly zoom, which moves a camera back-
ward on a dolly while zooming in on the foreground. This
gives the appearance of a character or object ”falling out”
of the background. By doing this out-of-camera, we hope
to give additional control and allow anyone to create rich,
programmable parallax between foreground and background
by simply taking a few pictures. Finally, we hope to make
this approach applicable to a number of different scaling
and transformation effects by creating a general framework
to identify features in a scene across images, segment out
foreground from background, and enforce constraints on the
resulting video. In computer vision, this technique is formally
known as image registration because it involves fitting images
to each other using common features.

II. PROBLEM STATEMENT

More formally, we can define our problem as follows: given
a source and target image, a parallax method transforms the
target into the source such that a subset of matching features
(in the foreground, background, or other important region)
map to the same points in image space. By changing the
selection of points, we re-create camera effects like the dolly
zoom and reverse dolly zoom. We do so using traditional
3D reconstruction techniques and test our approach using
image sequences collected with smartphone cameras. Finally,
we evaluate our approaches quantitatively by measuring the
distance between matched features in the final transformations.
For data, we collected around 10 sequences with an average
of 5 frames per sequence.

III. RELATED WORKS

In order to create programmable parallax, we require four
distinct steps: feature detection, foreground segmentation, im-
age transformation, and interpolation.

Feature detection is perhaps the richest of these three
segments and has seen critical advances over the course
of computer vision’s history. [13] provides a comprehensive
survey of this space, discussing the evolution of local feature
detectors and trade-offs of approaches like Harris corner, DoG,
SURF and other featurizers. For this project, we use ORB
features because they have been shown to work well for
tasks like SLAM over the last ten years and their approach
is supported by Python libraries like OpenCV.

Next, foreground segmentation is often tied to and improved
by advances in scene segmentation. Recently, deep-learning
techniques like Mask-R-CNN [7] have shown incredible per-
formance on such segmentation tasks. However, for our use
case, because we will have access to the true depth maps from
using smartphone cameras, we plan to sidestep this segmenta-
tion problem by either being given known depth masks from
an iPhone or by manually performing segmentation using the
Watershed algorithm [4].

Next, a number of recent works have proposed to solve
the novel view synthesis problem by performing nonlinear
warping[2] or directly predicting pixel flow and depth or
work[6] [11], usually using function approximators like neural
networks. Many of these approaches, however, do not ex-
plicitly focus on in-frame transformations and instead con-
cern themselves with longer-term sequence prediction. This,
compounded with unknown poses and a focus on dynamic
scenes, makes these approaches significantly more tricky than
the one we hope to explore. In practice, because we deal
with fairly constricted image sequences, we again sidestep
the more difficult view synthesis problem and instead choose
to parameterize our transforms as more traditional affine
matrices, homography matrices, and splines [1]. We will go
over these more in depth in the methods section.

Finally, there has also been a rich body of work in inter-
polating frames between key frames. Though linear interpo-
lation has been used most regularly, a number of other more
traditional approaches have used adaptive convolutions [12],
phase-based motion [10], and flow estimation [8].

More recently, a number of neural-network based ap-
proaches have been proposed to solve the interpolation prob-
lem, including [9], which trains a Generative Adversarial
Network using cyclic consistency loss to produce intermediate

https://www.github.com/glebshevchukk/231a_zoom


frames, [14], which utilizes a recurrent pyramid network
structure, and [3] which uses known depth information to aid
in optical flow estimation.

IV. METHODS

Accomplishing this task requires four key components:
performing foreground segmentation, doing feature detection
and matching, applying image transformation, and finally
interpolating between frames.

Each of these can be done in a number of ways and for
the sake of experimentation, we examine two ways of doing
foreground segmentation, one way of doing feature matching,
three ways of performing a transformation, and two ways of
performing interpolation. These approaches are summarized in
the below table:

segment feature-match transform interpolate
given ORB+BF affine linear

manual homography flow
thin-plate spline

Fig. 1. Four core steps to performing image registration.

A. Foreground segmentation

We examined two different methods for foreground seg-
mentation. The first method was using portrait mode from an
iPhone camera and obtaining the depth results from the pre-
segmented image. The second was manually segmenting the
image sequences using the watershed algorithm.

Though estimating the foreground of an image correctly
is still an open problem, especially in the monocular setting,
we simplify it by using additional depth information made
available through a smartphone camera. Namely, by using
Portrait Mode on the iPhone camera, we are able to capture
both RGB and depth information. Then, by thresholding the
depth at a certain value, we are able to extract all foreground

elements in an image. Therefore, the first step in our pipeline
involves using Portrait Mode to capture N images of a subject,
using the Exiftool software to extract depth information, then
thresholding each image and seperating it into foreground and
background elements.

Fig. 2. RGB and accompanying depth map captured using Portrait mode.

An alternate method for segmenting the foreground is a
form of manual segmentation. Since manually indicating pixel
by pixel what is the foreground is inefficient, we use the
watershed algorithm to speed up the process. The implemen-
tation of the watershed algorithm in this project presents the
user with an image. From this point, they use two different
marker colors to indicate significant points on the image
delinating the foreground from the background. The exact
specifics of the watershed algorithm are beyond the scope of
this paper, however, the watershed algorithm utlizes these user
defined marks to then flood pixels surround the marks and
define different portions of an image based on marker color.
The name watershed comes from the fact that the algorithm
treats the 2d image as a topological map with peaks and
valleys and the user defined marks act as basins. From this
point, flooded pixels flow towards the user defined marks thus
making boundaries for segmentation to be used further in the
pipeline. An example of the use of the watershed algorithm to
segment the foregroudn from the background is shown below.

Fig. 3. User marked RGB and accompanying depth map created using
implemented watershed algorithm.

B. Feature detection

Next, we have to identify features in all images and
match them. In dolly zoom, we only select features from



the foreground while in reverse dolly zoom, we only select
features from the background of each image. Using OpenCV,
we first identify ORB (Oriented FAST and Rotated BRIEF)
features. Next, we use a brute force matcher that minimizes
the squared distance between a source feature descriptor and
all target descriptors. After this step, we establish feature
correspondences between each target image (N-1 in total) and
the original source image (the 0th image). An example of this
fearure mapping can be seen below.

Fig. 4. Matched features between sequential segmented images using ORB
features

C. Feature transformation

To simplify the feature transformation step, we assume that
all images are strictly sorted by distance or rotation. We can
then parametarize the transformation between each pair of
images using estimated affine matrices, homography matrices,
and splines.

For the first two methods, we estimate the transform as
either an affine or projective matrix, where the only distinction
is in number of controllable parameters, then perform a affine
or projective transform.

Formally, we find the affine transform between each frame
by initializing a random affine matrix with 4 controllable
parameters:

A =

[
s ∗ cos(θ) −s ∗ sin(θ) x
s ∗ sin(θ) s ∗ cos(θ) y

]
Then, using RANSAC, we optimize towards the optimal affine
matrix that minimize the distance between the target matched
points from the original image denoted and the transformed
source points Axs∀s ∈ S.

We perform the same process for the latter two methods
but with different parameterized representations, where the
homography matrix expressed as:

H =

a b c
d e f
g h i



with the only constraint being that the final found matrix
is normalized such that the final entry i is 1, and the thin-
plate spline [5] being represented as a per-point displacement
defined by the equation:

d(x, y) = a1 + a2x+ a3y +

n∑
i=1

wiU(Pi − (x, y)) (1)

where a1, a2, a3, wi are controllable parameters for each
source point and U is a distance function.

D. Interpolation

Finally, after transforming each target image, we interpolate
between these ”key frames” in order to produce a final, smooth
parallax video. We can do this two ways: by either linearly in-
terpolating between or by using an estimated optical flow. For
the former, we simply specify a number of intermediate frames
then produce an interpolated video by taking a weighted sum
of previous and next key frames. For the latter, we perform
optical flow estimation using the Lucas-Kanade method then
interpolate each pixel by using the found flow.

V. RESULTS

In order to effectively determine what composes a good
computational zoom, we did numerous tests between static
image sequences to determine the best pipeline.

The segmentation appears to perform better on people rather
than objects. Additionally, it appears to perform better on situ-
ations where the subject is more distinct from the background.
Both of these insights are fairly intuitive, however give us
direction on future implementations of foreground segmenta-
tion In addition to the implementation using the Exifol tool,
a manual segmentation method using the watershed algorithm
was used to segment the foreground from the background. In
future iteration of this pipeline, an edge detector method such
as canny edge detection could be used in combination with
the portrait mode to give us a better estimates of depth. In
all casesthough, segmentation provided good results that were
usable by the algorithm. As a result any of the two methods,
manual segmentation or segmentation using the Exiftool could
be used in the pipeline.

For the interpolation type, we explored both flow-based
interpolation as well as linear interpolation. With a flow
based interpolation, we saw a smoother interpolation of the
foreground, but also saw more artifacts in the background.
Contrary to the effect seen by a flow based interpolation, the
linear method appears to have a more jittery foreground flow
and a smoother background flow.

For the transformation portion of the pipeline, we explored
3 different methods using affine, homographic, and thin-
plate spline transformation. These results are shown in Figure
8. From these, we see that the thin-spline implementation
appeared to spiral the foreground and not produce the desired
dolly zoom effect. Meanwhile, the simplest transformation,
the affine transformation, produced the best results where
the foreground appeared to be static while the background



was transformed. The was counter intuitive since it was the
simplest to implement, however makes sense retrospectively
since the affine transformation allows us to create perspective
distortion which typically results in the subject retaining its
features throughout the transformation. Furthermore, given
that each frame was produced by moving the camera along a
single axis, an affine matrix seems precise enough to capture
that motion.

It is interesting, too, to contrast the qualitative results shown
in Figure 8 against the quantitative results seen in Figure
7. To produce this second figure, we measured the average
pixel difference between the first frame in each sequence
and each subsequent frame that we were transforming using
the different methods. Importantly, we only measured this
difference over the foreground element for which features were
being calculated. Ideally, the loss for each subsequent frame
would be 0, as the used transform would map the foreground
to the target frame foreground correctly. At the same time, we
should see these results match with the visual accuracy of the
qualitative ones.

Surprisingly, this does not seem to be the case. Across all
transform strategies, we should see decreased performance as
frames get farther away from the original. This makes sense
intuitively; as a frame gets farther from the original, it should
be harder to find matching features between it and the source
frame. In turn, the average loss across all sequences should
generally have an upward slope. However, this is not the case
for 3 of the 4 sequences we tested with. In addition, we
expected these results to match with the visual ones but found
little correlation. For 2 of the 4 sequences, the spline-based
transform appears to have the best performance, even though
we know it creates severe distortions and produces the least
visually compelling dolly zooms. Furthermore, results showing
the difference between linear and flow-based interpolation
show the flow-based approach having better performance.
However, through visual inspection, we know that the flow-
based approach produces stronger distortions than the linear
one and leads to more unnatural zooms.

Finally, our current approach leads to some jitter in the final
output. This is difficult to illustrate in still images, however,
the progression of the dolly zoom effect formed from the
interpolation methods and transformation methods discussed
above is displayed below.

VI. CONCLUSION

In conclusion, the described pipeline allows us to produce
dolly-zoom effects during post-processing. By implementing
different approaches for each part of the pipeline, we explored
what it takes to create a visually-consistent dolly zoom. In
doing so, we found that the simplest approaches, using affine
transformation and linear interpolation, produced the most
stable results.

REFERENCES

[1] Anubhav Agarwal, CV Jawahar, and PJ Narayanan.
A survey of planar homography estimation techniques.

Fig. 5. Dolly zoom output estimated using affine transformation.

Fig. 6. Actual Dolly Zoom Effect output.

Centre for Visual Information Technology, Tech. Rep.
IIIT/TR/2005/12, 2005.

[2] Shai Avidan and Amnon Shashua. Novel view synthesis
in tensor space. In Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, pages 1034–1040. IEEE, 1997.

[3] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang,
Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video
frame interpolation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3703–3712, 2019.

[4] Lamia Jaafar Belaid and Walid Mourou. Image seg-
mentation: a watershed transformation algorithm. Image
Analysis & Stereology, 28(2):93–102, 2009.

[5] Fred L. Bookstein. Principal warps: Thin-plate splines
and the decomposition of deformations. IEEE Transac-
tions on pattern analysis and machine intelligence, 11



Fig. 7. Average pixel distance between the first target image and each transformed image. In the first row, we show this for different transform strategies
across 4 image sequences. In the second row, we show this for 2 interpolation strategies.

(6):567–585, 1989.
[6] Ismael Daribo and Béatrice Pesquet-Popescu. Depth-

aided image inpainting for novel view synthesis. In
2010 IEEE International workshop on multimedia signal
processing, pages 167–170. IEEE, 2010.

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. Mask r-cnn. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 2961–
2969, 2017.

[8] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan
Yang, Erik Learned-Miller, and Jan Kautz. Super slomo:
High quality estimation of multiple intermediate frames
for video interpolation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 9000–9008, 2018.

[9] Yu-Lun Liu, Yi-Tung Liao, Yen-Yu Lin, and Yung-Yu
Chuang. Deep video frame interpolation using cyclic
frame generation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 8794–8802,
2019.

[10] Simone Meyer, Oliver Wang, Henning Zimmer, Max
Grosse, and Alexander Sorkine-Hornung. Phase-based
frame interpolation for video. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1410–1418, 2015.

[11] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for
view synthesis. In European Conference on Computer
Vision, pages 405–421. Springer, 2020.

[12] Simon Niklaus, Long Mai, and Feng Liu. Video frame
interpolation via adaptive convolution. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 670–679, 2017.

[13] Tinne Tuytelaars and Krystian Mikolajczyk. Local in-

variant feature detectors: a survey. Now Publishers Inc,
2008.

[14] Haoxian Zhang, Yang Zhao, and Ronggang Wang. A
flexible recurrent residual pyramid network for video
frame interpolation. In European Conference on Com-
puter Vision, pages 474–491. Springer, 2020.



Fig. 8. Qualitative results from estimating different transforms.


	Introduction
	Problem Statement
	Related Works
	Methods
	Foreground segmentation
	Feature detection
	Feature transformation
	Interpolation

	Results
	Conclusion

