CS231A Final Project - Video to PDF

Yuki Inoue
School of Electrical Engineering
Stanford University
Email: yinoue93 @stanford.edu

Abstract

We introduce a system which takes a video of a document
to be scanned as its input and outputs a set of images that
correspond to the document pages. These images could then
be converted to a single pdf file. Unlike the earlier works,
not only does the system recognize each page flips and rec-
tifies the pages, it also applies a series of image enhance-
ments to improve the output image quality. The system also
contains a false positive mechanism to remove any dupli-
cate images. As taking a video takes significantly less time
than scanning each page at a time using traditional method-
ologies, this greatly reduces the amount of time and mental
pain that a user must go through when scanning documents.

1. Introduction

Scanning pages takes a long time. It would be highly
convenient for users to be able to take a video of them-
selves flipping through a document and have the document
automatically converted to a PDF. Such a program will have
wide usages. For Teaching Assistants, this could be used to
upload paper exams to grading sites. For historians, this
could be useful for digitizing primary historical sources.
For an average person, perhaps this would be helpful when
keeping track of receipts. Simply put, such a program can
lessen the time and mental burden put on the users when
s/he has to scan a document.

2. Background
2.1. Earlier Works and Our Improvements

As this study has a specific application goal in its mind,
it contains many topics that otherwise do not go together.
As such, there have been many works that focuses on por-
tions of the process we propose, but only a few tackles the
problem as a whole.

One notable example of the few that tackle the problem
as a whole is a work done by Lu and Viswanathan [1]. Their

Jason Liu
Department of Computer Science
Stanford University
Email: liujas00 @stanford.edu

work is on an efficient method to digitize the exam papers,
which involved taking a video of the exam paper to digi-
tize, and segment/rectify the video. This is very similar to
our work, except for a few key differences. First, due to
how their application was meant to be used, having dupli-
cates of the same document page is acceptable, though not
desired. On the other hand, our application is scanning the
documents, so it is unacceptable to have duplicates of the
same page. Therefore, after extracting the pages from the
video, there needs to be a false positive detection mecha-
nism that can remove the duplicate pages. Another key dif-
ference is that in addition to rectifying the images, we also
applied a number of image enhancement techniques. Lu and
Viswanathan’s paper does mention about super resolution,
but it also states that the implementation was not practical,
as the iterative method used takes a long time to process.
We use two image enhancement techniques, and they can
both be applied within a practical time period (under half a
second).

There have been many papers written on super resolution
(SR) [5,6]. Super resolution is a technique to convert a low
resolution image to a higher one. However, as low resolu-
tion images contain less information than its higher coun-
terpart, this problem is ill-posed and have many solutions.
Therefore, SR techniques “recovers” the lacking informa-
tion by filling in the information that are most likely. Tradi-
tional SR techniques use things like notable patterns present
in the image, and pixel interpolation to estimate the lost in-
formation. Recent papers even introduce machinery such as
Convolutional Neural Nets for this purpose [6]. However,
most of these SR techniques do not apply to our situation,
as normal SR techniques aim to recover images of pictorial
scenery, which are much more complex than the images of
printed documents. Printed documents tend to have set fea-
tures such as white background, only use few colors, etc,
that makes it easier to estimate how to reconstruct the im-
age. Therefore, SR for printed documents do not need to
be able to do nuanced procedures like pattern matching and
estimating how much to smooth/blend colors. Rather, it just
needs to be able to sharpen the letters and lines in an image,

but at a much greater speed.

Of all the papers regarding SR, a paper by Zheng, et. al.
[2] introduces a real time document enhancement technique
that we decided to implement as the super resolution step.
It blends the edge enhanced image with the original im-
age in a way such that the regions that need edge enhance-
ment receive edge enhancement and vice versa. Though we
used different method to determine where the boundaries
between the letters and the background are, we followed
their lead in implementing SR.

2.2. Contributions

Our contributions towards this problem space involve
creating methods that are generalizable to the problem
space itself, such as eliminating false positives and hand
detection. As stated previously, we also tackled super-
resolution in a more focused space of text image enhance-
ment, with which we demonstrate a more reasonable speed
of image processing.

3. Technical Aspects
3.1. High Level Description

Video to PDF conversion involves multiple steps. The
high level flow chart of the system is outlined in Figure 1.
First, given a video input, the system detects which frames
contain good images of the document to be scanned. It tries
to avoid duplicates of the same page, but it is not absolutely
critical to get everything right, as the next step figures out
which images are similar to each other, and removes any
duplicates. This step also figures out if hands are in part of
the image as well. After removing those false positives, the
system estimates the bounding box for the document, and
rectifies the image using a perspective transformation. We
technically have a scanned document at this point, but as
video frames tend to be of a low image quality, a number of
image enhancements are applied onto the rectified images.
First, the brightness of the document is corrected using a
method based on least squares. This allows the output im-
age to be of uniform brightness, making it easier to read.
Super resolution is then applied to the images to sharpen
the boundaries between the letters and the document back-
ground. This helps the images to appear to be from a high
definition source. After all steps are complete, we are left
with a set of images that represent the pages of the docu-
ment in the video.

3.2. Technical Details
3.2.1 Image Segmentation

The first step in creating a PDF from a video is to automati-
cally detect and extract frames that correspond to document
pages. This segmentation problem is mentioned in Lu and

Bounding Box

. Image . .
Video Input 8 . Estimation / Image [
Segmentation e
Rectification
. Super Resolution
False Positive Brightness P
—| > : w/ Edge
Detection Correction
Enhancement

Figure 1: Outline of the proposed system

Viswanathan’s paper as well, and they attempted to solve
the problem by taking the affine transform of the consecu-
tive frames and looking at the norm of the affine transforma-
tion. We implemented this algorithm, with one extra step.
After taking the norms, we found the difference between
each norm and the one after, and found out that no matter
how much the parameters are tuned, we were always left
with many false positives and false negatives.

The problem with the algorithm proposed by Lu and
Viswanathan is their underlying assumption: that if two
consecutive frames do not contain the image of the same
page, then the affine transformation mapping from one
frame to another will be large (large here means that the
sum of the squared values of the elements of the affine trans-
formation matrix is large). But there is no guarantee that
the affine transformation is larger for the frames with dif-
ferent document pages. The only guarantee for such a sit-
uation is that there will not be any ’good’ affine mapping
between the two frames, as two images are not of the same
scene. This does tend to mean that the affine transformation
matrix is “larger,” as it results in the affine transformation
trying to unnecessarily morph the frame to make it look
like the other, but that is not always the case. For exam-
ple, it is perfectly possible to have a situation in which the
best affine transformation between two frames is the one
that does nothing. In this case, this will always produce
a false negative, because the affine transformation will be
very small.

3.2.2 Using Norm Differences

Lu and Viswanathan decided to threshold the norms, and
extract frames determined by this treshold value. We
wanted to go for something a bit more robust. And so, after
calculating norms, we then went through and found the dif-
ference between consecutive norms (by frame order). We
then took our array of differences and smoothed it out with
a Hanning window. Finally, we extracted frames where the
difference changed from negative to positive (indicating a
transition from high activity to stillness). The graphs for
this process on a sample video can be seen in Figure 2.

Figure 2: Image segmentation with gradients

(Top-left) Original graph of norms of affine matrix. (Top-
right) Graph smoothed with Hanning window. (Bottom)
Difference between consecutive points

3.2.3 Hand Recognition

We noticed that a number of images returned from our Im-
age Segmentation Algorithm contained hands. These ap-
peared to arise from two different circumstances. Firstly
was a combination of noise, as well as the phenomenon de-
scribed earlier where obtaining the affine transform. Due
to this, we would accidentally extract pictures from scenes
where we are actively flipping a page. Second, during our
videos, there were moments when the flipper would spend
time making small adjustments to a page after it was flipped
with their hands. Our segmentation algorithm would deter-
mine these frames as being fairly still and extract at least
one. Regardless of the situation, the presence of a hand in
the outside of the frame was constant. Therefore, we de-
veloped a way of detecting hands. This method involves
bounding box estimation, which is explained in the next
section. We first take the frames extracted from image seg-
mentation, and find the bounding box for each one. Then,
we perform the hand-recognition method, which is as fol-
lows:

We take the image and consider a 5 pixel border around the
pictures that is 10 pixels in from the outside. For each of the
three color channels, we subtract consecutive pixels in the
direction of each border. For the top and bottom borders,
this means subtracting left-right. For the left and right bor-
ders, this means subtracting top-bottom. After subtracting,
we take the absolute value of all differences. We then col-
lapse each border of depth 5 into depth 1 by adding up each
of the five values. Finally, we determine whether there are
hands by the presence of more than one high values from

any of the borders. Our rationale is that the presence of
hands will lead to a high difference in values of at least one
of the color channels. We finally take only the images that
our algorithm thinks does not contain hands.

8jpg_rectified. jpg hard detection

Figure 3: Hand detection comparison

(Top) image without hand. (Bottom) image with hand.
Graph: plots of the differences for all three channels for
each image

3.2.4 False Positive Detection

After performing hand detection, we moved on to imple-
menting false positive detection using feature point match-
ing. First, feature points for each image are discovered us-
ing SUREF, and then matched to see how similar they are to
each other. We used OpenCV’s Fast Library for Approxi-
mate Nearest Neighbor (FLANN), which, for each feature
point in one image, finds the two closest features points in
the other image.

Since feature matching takes a while to run, the size of
the images were reduced to a tenth of the original size when
extracting and matching features. Example output is shown
in Figure 4. The very top image is the feature matching
between two different pages, and the middle is for two of
the same pages. While the green lines indicating feature
matches is few and sparse for the top image, the lines cover
the images themselves for the middle image. The difference
in feature matches between images of the same page and
the images of different pages was around 100 times. The
bottom image of Figure 4 shows the feature matching result
for tenth of the image size. We see that some of the feature
matches survive even after we reduce the size of the image.

Figure 4: Feature matching between different frames.
Full image size, different pages (top), full image size, same
page (middle), 1/10 image size, same page (bottom)

We then take the number of the matches found to deter-
mine if two frames have changed significantly. Using this,
we perform feature matching between consecutive frames
and filter our found matches based on a ratio test of its dis-
tances between the two closest neighbors. The test is that
the distance to the closest feature point must be less than
.7 times the distance to the second closest feature point.[7]
This is because if FLANN finds a unique feature point
match, it is very likely to be closer to our feature point in
question than any other potential matches. We normalize
by dividing the number of matches filtered by the number
of matches found. Then, we threshold the values and ex-
tract frames in regions where threshold is low (indicate low
number of matches due to a page being flipped).

Number matches b | Number matches w! threshold

I R S E N

Figure 5: Example of SURF feature matching and with a
threshold

3.2.5 Bounding Box Estimation and Image Rectifica-
tion

Perspective correction is needed to correct the scanned doc-
ument to be flat. The first step in perspective correction
is to figure out the bounding box of a document. Lu and
Viswanathans paper addresses this problem by using edge
detector and finding the largest bounding box. Unfortu-
nately, as mentioned in the paper, this method is not robust,
as it gets easily fooled by nonidealities such as patterned

| background surface as well as figures within the documents

giving false readings.

In order to make the bounding box algorithm robust, it
was first noted that the boundary between a document and
the background should be defined by difference in pixel val-
ues that continues for more than a few pixels. Therefore,
edges defined with thin lines should be removed before edge
detection. This was realized by using the dilation function
of OpenCV, which expands the regions of brighter color.
The top right image in Figure 6 shows the dilated result. As
one can see, words as well as the figure on the document is
nearly removed by the dilation procedure.

After the thin lines are removed, boundary lines are esti-
mated by first applying an edge detection and then applying
the Hough Transform. The bottom left image of Figure 6
shows the estimated lines in blue and red. What we noticed
while implementing the bounding box algorithm was that
certain document edges tend to be more defined than the
others, resulting in multiple boundary candidates for one
edge all having higher “voting count” than the candidates
for other edges. Therefore, lines that are too similar to each
other were grouped together and the line with the highest
voting count was chosen to represent the group. Two lines
are considered too similar, if their slopes are similar, and
either the x- or y-intercept is too close to each other. As the
output of the Hough Transform in OpenCYV returns lines in
the form p = xcos(6)+ysin(6), the x- and y-intercepts can
be found by 2 and _Z respectively, and 6 can be used
as the slope of the line. The bottom left image of Figure
6 shows the result, and the red lines are the lines with the
highest voting counts for that particular line group.

The last step in finding the bounding box is to choose
which four points should be chosen to represent the bound-
ing box. This is done simply by finding the set of line inter-
sections that results in the largest area. Finally, a perspective
transformation was applied to rectify the image, as shown
in the bottom right of Figure 6.

The case in Figure 6 is ideal, as the background is com-
pletely black. How does the algorithm fare with background
that are neither black nor monotone? Figure 7 shows the
cases in which the background is neither black nor mono-
tone. As one can observe, the algorithm correctly identifies
the bounding box even if the background is nonideal.

Figure 6: Bounding Box Algorithm in Action -
original (top left), dilated (top right), bounding box estima-
tion (bottom left), rectified (bottom right)

3.2.6 Brightness Correction

One of the problems with using a video to scan a document
is that it is very difficult to have a uniform lighting on the
document. Also, even if a uniform lighting condition is re-
alized at the beginning, it is hard to maintain such a config-
uration while flipping through the document and holding a

e
:
w
-
o
iy
Y
2
W
U115 (VAR e
i M
= it PN ."'T“....."‘"'wu\nw'_!!!'.:«-um-. i
| .

, :

. 1 ! |

. —

nE | it
. i F 414 i |
; :
11 i 5
q | ba
L i_.,-;" HE

Figure 7: Bounding Box Algorithm for nonideal back-
ground

in the brightness value, all we need to reproduce is the low
frequency components of the pixel changes. This sheds a
light on how we can model the brightness information. Us-
ing the Discrete Fourier Decomposition, we can model the
brightness profile by combining a handful of low frequency
sinusoidal waves as follows:

video camera at the same time. So it would be very helpful

N
: nrT _(nTT
if the system can correct for an uneven lighting. Pizel Value = C+Z (a4ncos(w >+a4n+1sm(w)

One way to tackle this problem is to subdivide the im-
age into smaller chunks and assume that the brightness of
a region is roughly the average of the subsection. Though
this method is quick and easy, it would perform poorly for
the document with many figures and letters, as they would
significantly lower the brightness estimate. Also, these sub-
divisions would have to be big enough to collect enough
brightness information for a region, although having too
large of a subdivision will end up with ragged transition for
neighboring subdivisions. This requires careful parameter
tuning, which is not ideal.

So we decided to model the problem differently. Real-
izing that what needs to be estimated is the gradual change

n=1
nmy . /N7y
+ a4n+zcos(7) + a4n+3sm<7>

where h and w are the height and the width of the im-
age, and x and y are the coordinates of a point. Now the
problem is that of how to set the appropriate coefficient for
each sinusoidal components. As it is a linear problem, this
can be solved using Least Squares, by setting up the prob-
lem in the form y = Xa, and solve for a by calculating
a = (XTX)~'XTy. In this context, y is the vector of pixel
values at each point, and X is the matrix of sinusoidal val-
ues (i.e. cos(%), sm(%), etc.) at each sampled point.

In other words, the problem can be posed as follows:

Y1
Y2

Yn—1
Yn
1 cos(™t sin(Tt N sin(“G ay
1 cos(™22 sin(T22) ... cos(G2 sin(2522 Zz
1 cos(™ in| M L L s
(w) SZTL(w0) COS(7) SZH(3) -,

One caveat to note is that the sample points for the Least
Squares calculation should be representative of the bright-
ness value. Therefore, any pixels corresponding to texts or
diagrams on the document should not be used as a sam-
ple point. These "objects’ on documents were detected by
applying the findContour method in OpenCV, and assum-
ing that anything inside of the detected contours as the un-
wanted objects. Top right image in Figure 9 shows the re-
sult. The bottom left image of the same figure shows the
sampled points, and bottom right is the brightness adjusted
image.

Figure 8 shows the result for brightness correction. The
highest sinusoidal frequency (denoted N in the summation)
was chosen to be 4, and the number of sample points was
around 800 for the simulation (the number of sample points
varies from image to image, as the algorithm avoids sample
points that it judges is part of drawings on the document).
The top left is the original image, and it gets dilated to re-
move the unnecessary information such as letters and lines
(shown top right). Then the proposed algorithm is used to
estimate the brightness mapping (bottom left), and the es-

timate is used to remove the brightness disparity from the
original image (bottom right).

3.2.7 Super Resolution (SR)

Another problem with using videos to scan documents is
that videos tend to have low resolution, especially when
compared to still images. Therefore, resolution enhance-
ment is needed. In the world of computer vision, such a
procedure is called Super Resolution (SR). SR in general is
applied for any pictures, to recover details that are not clear
or present in a picture.

In the case of document SR, all that is required is to apply
edge enhancement to the document, as the difference in the
pixel value between the background and the texts should be
large, and thus there is no need to try to recreate a gradual
change of colors. However, it is not ideal to apply edge de-
tection to the whole picture, as edge detectors will enhance
noise in areas of low pixel changes, as can be seen in Figure
10.

Zheng et al. mentions a method that can take the best

Figure 8: Brightness Adjustment -
original (top left), dilated (top right), brightness estimation
(bottom left), brightness corrected (bottom right)

of both worlds. Revised version of their method is out-
lined in Figure 11. The essence of the algorithm is to figure
out which portions of the image needs edge enhancement
(noted «v in the diagram), and use that information to blend
the original image and the sharpened image. This way,
regions that need sharpening will get sharpened, and vice
versa. The sharpening region mask was created by finding
the difference between the dilated and the eroded versions
of the original image. The result is shown in Figure 12.
After blending the edge enhanced image and the original
images, bi-cubic interpolation is applied to double the size
of the image.

We chose to use Teager Filter to sharpen the edges [3].
Teager Filter is a nonlinear filter of the following form:

1
2
Yij = Syi,j - §yz’+1,j+1y¢—1,j—1 — Yi+1,jYi—1,5
1
- §yz‘+1,j—1yz’—1,j+1 — Yij+1Yi5-1

Compared to edge enhancement via linear Laplacian ker-
nel, we noted that Teager Filter performed better at enhanc-

Figure 9: Brightness Adjustment for documents with fig-
ures - original (top left), object mask (top right), sampled
points (bottom left), brightness corrected (bottom right)

Figure 10: Edge detection applied to uniform region.
Before (left), After (right)

ing very large pixel changes. As the pixel difference be-
tween the letters and the document background tend to be
large, Teager Filter was the filter of choice.

Input Output
Image a i- i |
g , Edge R Bi-cubic mage
Detection +7 Interpolation
1l-a

Figure 12: Boundary Finding Algorithm. Eroded image
(left) minus Dilated image (middle) yields the boundary
mask (right)

4. Experimental Result

Our overall project essentially breaks down into two
parts: image segmentation and text resolution. As such, we
decided to evaluate them independently of one another.

4.1. Image Segmentation

We recorded six videos of flipping through pages of var-
ious documents for a total of 44 pages. After just segmenta-
tion, we ended up with 172 frames, representing 41 pages of
the 44. Hand removal was applied next, and 83 frames were
removed. Finally, false positive elimination was then ap-
plied to the 89 frames left, and we ended up with 44 frames
(thus having 3 false positives).

4.2. Text Resolution

Figures 13, 14, and 15 show example results obtained
from sample images. For each figures, the images from
left to right are original, brightness adjusted, and Super
Resolution-ed. Lu and Viswanathan also mentioned that
their method takes 20 seconds to run their iterative super-
resolution algorithm on multiple small images of size 200
x 300 pixels. Our algorithm can process a single image of
around 1000 x 900 pixels in less than half a second.

It is hard to create a “fair” metric on text readability, as
it is a vague concept to begin with. In order to define the
term more concretely, we defined readability as the number
of letters that a black box OCR algorithm can pick up.
Therefore, a metric of redability improvement is defined
by how many more letters the OCR is able to decode after

EONG & COMMN N the Attrbeng & COWmn in t* 1 ez.nqa(o,'ummnthn Aty

heet: it keeps specific colur

heet: it keeps sDec heet: it kee

select Freeze/Unfreeze € solect Freeze/Unfreeze Ciselect Freeze/Unfreeze Co
of Palo Alto. How does thyjof Palo Alto. Mow does thopf Palo Alto. How does this
rancisco’ ranNCIsCe rancisco?

this menu. Right chick on tjthes menu. Right ¢hick tithis menu. Right-click ont

ame, alias, and type of thirame. alia name, alias, and type of this

Figure 13: Example Output 1.
Rectified (left), Brightness Adjusted (middle), SR (right)

wlal stcaunt s
o aten] Wt the | maeciatedd with the
e agpero e | I Ahe appraaiiiete
an e d s s [y 0em e Becyamaridy
taken om the veny
will prawrally take | will peasrally tabe
edbens ¢ st et
e spditting peant | the epditting padnt.
the bent Luaw Cning the bant (1aer faine
.'.4&1.‘”‘ e o» ywwth-hn

Figure 14: Example Output 2.
Rectified (left), Brightness Adjusted (middle), SR (right)

A‘¥b12\£
I Caleelaty
1, Ue f

Figure 15: Example Output 3.
Rectified (left), Brightness Adjusted (middle), SR (right)

image enhancements are applied. Because we are using
OCR, we decided to limit the scope of this evaluation to
images containing printed text, as that is generally easier to
discern rather than written text.

Our method is as follows. We took six frames from our
videos containing printed text, and found the corresponding
pages. We then scanned those pages. Then, we performed
super-resolution on each frame. Our evaluation involved
performing an OCR on a specified text segment within the
scanned page, the frame, and the improved frame. We also
ran the test on an image taken from a scanner, which serves
as a ground-truth metric. This is needed, as OCR is not
perfect, and thus it is quite possible that even if a document
is recovered to perfection, OCR could still misread the
content.

Document readability is then calculated as the edit distance
between the actual text and the text recovered from OCR in
each of the three situations. The following table summa-

rizes the result:

Scanned | Frame | Frame with SR
pgl 0 32 8
pg2 1 54 40
pg3 4 196 29
pgd 48 371 341
pgs 3 86 4
pgo 26 131 113

The final four weeks of the quarter are devoted to
collaborative research projects enriched through
additional practical and theoretical readings and the
practice of prototyping

Frame--
The final four week. of the quarter are d..voteil to
collaborative re.earch
projects, enriched liriitigh additional practical and
theoretical reading.,
the practice of prototyptng

The final four weeks of the quarter are devoted to

collaborative research projects enriched through
additional practical and theoretical readings anti the
practice of prototyping,

Figure 16: Sample of text comparison demonstrating Super
Resolution’s improvement

5. Conclusion

The results for image segmentation are positive, and sug-
gest that the methods we have taken are in the right step to-
wards solving this problem. One observation we made was
that of the three missing pages, two were the first page of a
video. A next step would be to figure some robust way to ac-
count for this without hindering false positive rate and hand
detection results. For text resolution, the results are promis-
ing as well. In all six pages, there was an improvement in
OCR capture, suggesting some improvement in readability
through Super Resolution. We can also qualitatively ob-
serve this readability improvement by looking at the exam-
ple outputs in Figures 13, 14, and 15. In all three images, a
combination of brightness adjustment and SR allows for a
better reading experience.

Our pipeline shows that there is much promise in us-
ing videos for document scanning. Although the resolu-
tion of the output may not be as good as a document that is
scanned using traditional methods, some of the low quality
constraints can be overcame by using a number of image
enhancement techniques such as the ones implemented in
this paper. Also, these image enhancement procedures can

be applied in real-time as well. Maybe it is not too far in the
future when it becomes a norm to scan documents by using
video feeds.

6. Future Works

One of the ways our image enhancement procedure can
be made better is to use more than one low resolution im-
age. As the input to the system is a video, we have access to
many instances of each page. Therefore, if the program can
somehow distinguish which portion of which image con-
tains the clearest subsection of the page, we can use the
information to create a new image that is the composite of
the clearest portions. Then, this composite image can be
used as a new input to the image enhancement procedure
for a better result. Another way to improve our work is to
create a better method to detect boundaries between letters
and the background. The method we devised using a com-
bination of dilation and erosion is only an approximate one,
and we noticed many times that the algorithm is not taking
advantage of the edge enhanced result as much as it could.
Figure 17 shows such an instance. The left picture is the
edge enhanced image, and it is noticeably clearer than the
SR output. This is due to the fact that the boundary map
(rightmost image in the figure) is very dark for this region,
meaning that the algorithm decided not to use that much
edge enhanced image when blending the original and the
edge enhanced images.

Students in Students in
(modules), « (modules), «
10% will be 10% will be
absences w

ibsences wil
electing to 1 electing to t4

Figure 17: An instance of a weak boundary map

Edge enhanced (left), SR output (middle), boundary map
(right). The boundary map is very dim, resulting in a low
edge emphasis.

7. Libraries used

OpenCV, Numpy, SciPy, editdistance

8. Code and Data

[2] Y. Zheng, Xudong Kang, Shutao Li, and Jian Sun,
”Real time document image super-resolution by fast mat-
ting” TAPR International Workshop on Document Analysis
Systems, Loire Valley, 2014.

[3] C. Mancas-Thillou and M. Majid. ~’Super-resolution
text using the teager filter.” First International Workshop on
Camera-Based Document Analysis and Recognition. pp.
10-16, 2005.

[4] Online OCR onlineocr.net

[5]1J. Sun, J. Sun, Z. Xu, and H. Shum. “Image super-
resolution using gradient profile prior.” In CVPR, 2008.

[6] C. Dong, C. Loy, K. He, and X. Tang. “Image Super-
Resolution Using Deep Convolutional Networks.” 2015.

[7] M. Muja, d. Lowe. "FLANN - Fast Library for Ap-
proximate Nearest Neighbors”. 2009

https://www.dropbox.com/s/ct8qsunhmvvyall/finalScript.zip?d1=0

9. References

[1] C. Lu and K. Viswanathan, "Exam Digitization for
Online Grading.” CS231A Class Project, Stanford Univer-
sity, 2014.

