
Convolutional Neural Networks for Image Classification and
Captioning

Sachin Padmanabhan sachin@cs.stanford.edu

Department of Computer Science, Stanford University

Abstract

In this paper, we explore the use of convolutional neu-
ral networks (CNNs) for the image classification and
image captioning problems. These tasks are extremely
important in modern computer vision and have numer-
ous applications. We explore the performance of sev-
eral deep learning models on the image classification
problem. We then use a CNN trained for the image
classification problem as a feature extractor to describe
a simple CNN–RNN architecture that achieves near
state-of-the-art performance on the image captioning
task.

1. Introduction

In recent years, convolutional neural networks (CNNs)
have revolutionized computer vision. Although they
have been around since at least the 1990s, when they
were popularized by Yann LeCun’s LeNet (LeCun
et al., 1989), (LeCun et al., 1998), it has only recently
become possible to train these large, complex networks
on very large datasets. Since (Steinkrau et al., 2005)
showed the value of using GPUs for machine learn-
ing, modern GPU computing and parallel computing
methods have massively increased the ability to train
CNN models, leading to their rise in research and in
industry. We are now able to train networks with mil-
lions, or even billions, of parameters on extremely large
datasets like ImageNet, relatively efficiently.

Image classification is one of the classic problems in
computer vision: given an image, identify it as be-
ing a member of one of several fixed classes. Image
classification is a classic problem partly because of its
numerous applications. Autonomous driving requires
fast image classification as a particularly critical prim-
itive. In addition, modern social media and photo
sharing/storage applications like Facebook and Google

Project done in Stanford University’s CS 231A (Computer
Vision) course taught in Spring 2016 by Professor Silvio
Savarese.

Photos use image classification to improve and per-
sonalize user experience on their products. The image
classification problem is also representative of many
common challenges in computer vision such as intra-
class variation, occlusion, deformation, scale variation,
viewpoint variation, and illumination. Methods that
work well for image classification are likely to translate
to methods that will improve other key computer vi-
sion tasks as well, such as detection, localization, and
segmentation.

A prime example of this is image captioning. The im-
age captioning problem is to, given an image, output
a sentence description of the image. The image cap-
tioning problem is similar to the image classification
problem, but more detail is expected and the universe
of possibilities is larger. Modern image captioning sys-
tems use image classification as a black box system, so
better image classification leads to better captioning.
The image captioning problem is interesting in its own
right because it combines two major fields in artifi-
cial intelligence: computer vision and natural language
processing. An image captioning system exhibits un-
derstanding of both image semantics as well as natural
language. In recent years, natural language processing
has also been revolutionized by deep learning, in the
form of Recurrent Neural Networks (RNNs). Modern
solutions to the image captioning problem have the
unique distinction of using state-of-the-art models in
both fields.

The applications of image captioning are also numer-
ous. Besides similar applications in social media, im-
age captioning has a great number of image-to-speech
applications. Such systems could be used to augment
user experience in driving, tourism, and many other
situations. Image captioning is also very useful as a
subcomponent for image search engines. Finally, im-
age captioning systems could become a crucial com-
ponent of accessibility software in the future, helping
humans with vision problems draw meaning from their
surroundings.



Convolutional Neural Networks for Image Classification and Captioning

2. Literature Review

2.1. Previous Work

State-of-the-art CNN models for image classification
are judged by their performance on the ImageNet
challenge. They have proceeded incrementally since
(Krizhevsky et al., 2012) introduced AlexNet in 2012,
with modifications to the architecture that have im-
proved performance. In 2014, (Szegedy et al., 2015)
introduced GoogLeNet, which was an improvement on
AlexNet, mainly through greatly reducing the num-
ber of parameters involved. Also, in 2014, (Simonyan
& Zisserman, 2014) introduced the VGGNet, which
achieved good performance because of the depth of
the network. Most recently, in 2015, (He et al., 2015b)
introduced the ResNet, which utilizes “skip connec-
tions” and batch normalization. The performance of
these models on ImageNet is shown in Table 1.

Table 1. Error rates on ImageNet challenge.

Model Top-5 Error Rate

AlexNet 15.3%
GoogLeNet 6.67%
VGGNet 7.32%
ResNet 5.71%

The image captioning problem has also seen a lot of
work in recent years. In the last year, (Karpathy &
Fei-Fei, 2015) introduced a method that combines a
pre-trained CNN (VGGNet) as a feature extractor, a
Markov Random Field (MRF) model for alignment,
and an RNN for generating text descriptions. The
approach of (Donahue et al., 2015), similarly, uses a
pre-trained VGGNet as a feature extractor, and di-
rectly inputs these feature vectors and the word em-
bedding vectors for sentences at each time step of a
Long Short-Term Memory (LSTM) model, which was
introduced by (Hochreiter & Schmidhuber, 1997). In
(Vinyals et al., 2015), Vinyals et al. improve on this
approach by only inputting the image vector at the
first time step of the LSTM, which they found to im-
prove the results.

2.2. Contributions

In this paper, we explore both the image classification
problem and the image captioning problem.

For the image classification problem, we explore and
motivate methods for improving the classification ac-
curacy of CNN models in a bottom-up manner. Along
the way, we show the impact that these modifications

have on model performance. We have implemented all
the models we tested (plus more popular models), in
Python using both the Keras and Lasagne deep learn-
ing libraries. This “model zoo” is available for the
community to use and improve.

For image captioning, we have implemented a method
in the style of Vinyals et al. The method compares to
the performance of the original implementation. How-
ever, we found that with smaller amounts of training
data, using Gated Recurrent Units (GRUs) (Cho et al.,
2014) instead of LSTMs improve the performance of
the model.

All the source code for this project can be downloaded
here.

3. Technical Solution

3.1. Overview

In this section we describe the architectures of our
model at a high level. We first describe the datasets
and technical stack used, as well as the preprocessing
we did on the data. We discuss our choice of stochastic
gradient descent (SGD) with Nesterov momentum as
our optimization method, initial choice of weights, reg-
ularization methods, and our choice of rectified linear
units (ReLUs) as the nonlinearity applied after layers.

Then, we describe the models that were developed for
image classification. We begin with the baseline, which
was a simple softmax regression model (or, a single
layer neural network). We then move to a multi-layer
perceptron network, and then start adding convolu-
tional layers and max-pooling layers in different ways.

For image captioning, we give a description and mo-
tivation of the implemented CNN-RNN models and
their components.

3.2. Details

3.2.1. Datasets

To train models for image classification, we used the
Tiny ImageNet dataset, which was created for CS231N
at Stanford University. In the original ImageNet
dataset, there are over 1, 200, 000 labeled training im-
ages, each with an average resolution of 256×256 pix-
els. Each image is labeled with one of 1000 different
classes. The Tiny ImageNet dataset has fewer classes:
200 instead of 1000. The training set has 10, 000 im-
ages: 500 from each class, 10, 000 validation images
(50 from each class), and 10, 000 test images (50 from
each class). Each image has a fixed resolution of 64×64
pixels. The Tiny ImageNet dataset can be downloaded

https://github.com/sachinpad/image_captioning


Convolutional Neural Networks for Image Classification and Captioning

by following the link here.

To compare our results, we also use the MNIST and
CIFAR-10 datasets.

The MNIST dataset, introduced by (LeCun et al.,
1998) consists of 70, 000 labeled examples (60, 000
training examples and 10, 000 test examples) of hand-
written digits (0–9), each of which are 28 × 28 black-
and-white images. The MNIST dataset can be found
here.

The CIFAR-10 dataset, introduced by (Krizhevsky &
Hinton, 2009) consists of 60, 000 images (50, 000 train-
ing examples and 10, 000 test examples), each labeled
with one of 10 classes. Each image is a 32 × 32 color
image. The CIFAR-10 dataset can be found here

We also implicitly use the ImageNet dataset because
we also use a pre-trained VGGNet model, which was
trained on the ImageNet dataset.

For image captioning, we use the Flickr8k dataset, in-
troduced by (Rashtchian et al., 2010), which consists
of 8, 000 images (6, 000 training images, 1, 000 valida-
tion images, and 1, 000 test images), each of which are
paired with a list of 5 different captions, which provide
descriptions of the entities and events in the image.
The Flickr8k dataset can be downloaded by following
the link here.

3.2.2. Preprocessing

For image classification, we apply data augmentation
by randomly shifting or horizontally flipping images
in our dataset. This increases the size of the training
set, which will increase accuracy by decreasing over-
fitting. Although this method was implemented, the
training times with our resources were prohibitively
long because of the new size of the training set, so we
weren’t able to get results. Data augmentation should
definitely be explored in future work, however.

For image captioning, we preprocessed each image by
resizing (and transposing) it to be 3×244×244, which
is the expected input to the VGGNet model. We also
preprocessed the given captions by tokenizing, lower-
casing, and applying <BEGIN> and <END> tokens to
the beginning and end of the caption, respectively.
We padded with <UNUSED> tokens until the caption
reached the max caption length of 16. To generate
the training set, we generated 15 partial captions from
each image-caption pair. The training example was
then (image, partial caption) → (next word). In this
way, each image-caption pair generated 15 training ex-
amples. Thus, the final preprocessed training dataset
had 6000 · 15 = 90000 training examples.

3.2.3. Technical Stack

Since we required training relatively large models on
a relatively large amount of data, we require more nu-
merical computing power than a standard CPU. Thus,
we ran our methods on a g2.2xlarge GPU instance
from Amazon Web Services (AWS).

We also required building and iterating on several
models, training them, and analyzing the performance,
so we used the Keras deep learning library for Python
(although our models are implemented using Lasagne
as well). Keras and Lasagne allowed us to build com-
plicated models sequentially with relative ease just by
stacking layers, and to also train these models just as
easily.

3.2.4. Optimization Algorithms

To find the optimal parameters in our networks, we
explored many choices of optimization algorithms,
including vanilla stochastic gradient descent (SGD),
SGD with Nesterov momentum updates, Adadelta,
and RMSprop.

For training CNNs for image classification, we found
that with almost all different weight initializations,
both Adadelta and RMSprop got stuck in local op-
tima: the training accuracy skyrocketed to almost
100% while the validation accuracy was almost as bad
as random guessing (0.05%). We did find that SGD
worked, but frequently gave worse results than SGD
with Nesterov momentum updates.

For training the final merged RNN network for image
captioning, we found identical results: we again found
that Adadelta and RMSprop got stuck in local optima
– the loss function stopped decreasing after around 5
to 10 epochs of training. Again, vanilla SGD worked
but using Nesterov momentum updates gave better
convergence.

3.2.5. Weight Initialization

Since neural network objective functions are highly
nonconvex, the initial choice of weights for the net-
work is critical, since it is easy to get stuck in local
optima.

We experimented with uniform weight initialization,
and the recommendations of (Glorot & Bengio, 2010)
and (He et al., 2015a) for ReLU neurons.

We found that using Glorot and He initializations led
to a lower frequency of getting stuck in local optima
than using uniform weight initialization, but the differ-
ence between the two was not particularly significant
for our experiments. Thus, we used Glorot et al.’s

http://cs231n.stanford.edu/tiny-imagenet-200.zip
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
http://nlp.cs.illinois.edu/HockenmaierGroup/Framing_Image_Description/KCCA.html


Convolutional Neural Networks for Image Classification and Captioning

weight initialization in our final models.

3.2.6. Regularization

To avoid overfitting, especially with complex models
like neural networks, it is often critical to incorporate
weight regularization into the model. This penalizes
large, biased weights in favor of smaller weights that
cannot overfit as much to data.

One common method of regularization is to add
λ‖W‖2 to the network objective function which we
minimize, where W is a vector containing all the
weights of the network. In practice, this is often im-
plemented by regularizing each layer. We found that
this particular method of regularization does not make
much of an impact on the validation accuracy, but
perhaps it would be worthwhile to include for larger
models on larger datasets.

Another common method of regularization, introduced
by (Srivastava et al., 2014), is dropout. In dropout, we
keep a neuron active during training with probability
p, and otherwise set it to 0. We used dropout to control
overfitting and reduce training time, particularly on
layers that have lots of parameters. The values of p for
these layers were tuned by choosing different values on
different runs.

3.2.7. Nonlinearities

After each (non-pooling) layer in a CNN, we apply a
nonlinearity that maps the score at each neuron to an-
other real number. The traditional nonlinearity is the
sigmoid function, σ(x) = 1/(1 + e−x), which maps a
real number x to a value in the interval [0, 1]. Another
traditional nonlinearity is the tanh function, which has
the same shape as the sigmoid function but maps real
numbers into the interval [−1, 1].

Recently, the most popular nonlinearity is the rectified
linear unit (ReLU). The definition is f(x) = max(0, x).
The popularity of nonlinearity is (somewhat ironically)
due to its simple, linear form. Because of this, it
greatly improves the speed of SGD compared to sig-
moid and tanh functions. Furthermore, the ReLU
function is very easy to evaluate, especially because
it doesn’t involve any exponentials, or even division.

However, ReLUs are fragile and sometimes can per-
manently die during training. To fix this problem, the
leaky ReLU was proposed, which has a small negative
slope when for negative inputs.

We found that using ReLU units improves training
time as well as accuracy, as expected from results in
the literature. However, leaky ReLU units did not give

an improvement over ReLU.

3.2.8. Image Classification Models

In this section, we show the architectures for the mod-
els we build for image classificaiton.

There are two types of neural network layers that are
specific to CNNs. The first is a convolutional layer.
This layer runs a sliding window through the image
and at each step convolves the subimage with a num-
ber of filters, producing a new volume where we have
increased the depth. A pooling layer downsamples the
volume along the spatial dimensions by a certain fac-
tor. This reduces the size of the representation and the
number of parameters which makes the model more
efficient and prevents overfitting. The most common
type of pooling layer is a max-pooling layer, which
takes the max from each downsampled block.

In the following descriptions, CONV(n, s) denotes a
convolutional layer with n filters and a window size of
s × s, POOL(z) denotes a pooling layer with a factor
of z, and FC(n) denotes a fully-connected layer with
n units.

Softmax (baseline): FC(200), SOFTMAX

MLP: FC(512), RELU, FC(200), SOFTMAX

LeNet: CONV(32, 3), RELU, POOL(2), CONV(32,
3), RELU, POOL(2), FC(512), RELU, FC(200),
SOFTMAX

CNN1: CONV(32, 3), RELU, CONV(32, 3), RELU,
POOL(2), DROPOUT(0.25), FC(128), RELU,
DROPOUT(0.5), FC(200), SOFTMAX

CNN2: CONV(32, 3), RELU, CONV(32,
3), RELU, POOL(2), DROPOUT(0.25),
CONV(64, 3), RELU, CONV(64, 3), RELU,
POOL(2), DROPOUT(0.25), FC(512), RELU,
DROPOUT(0.5), FC(200), SOFTMAX

CNN3: CONV(16, 5), RELU, POOL(2), CONV(16,
3), RELU, POOL(2), CONV(32, 3), RELU,
FC(200), SOFTMAX

CNN4: CONV(32, 5), RELU, CONV(32, 3), RELU,
POOL(2), CONV(64, 3), RELU, POOL(2),
CONV(128, 3), RELU, POOL(2), FC(256),
RELU, DROPOUT(0.5), FC(200), SOFTMAX

CNN5: CONV(64, 5), RELU, CONV(64, 5),
RELU, POOL(2), CONV(64, 3), RELU,
CONV(64, 3), RELU, CONV(64, 3), RELU,
POOL(2), CONV(128, 3), RELU, FC(256),
RELU, DROPOUT(0.5), FC(256), RELU,
DROPOUT(0.5), FC(200), SOFTMAX



Convolutional Neural Networks for Image Classification and Captioning

In addition, we also implemented larger popular mod-
els not shown here, including AlexNet, GoogLeNet,
and VGGNet.

3.2.9. Image Captioning Model

In this section, we explain the image captioning
method implemented, which closely follows that pre-
sented by Vinyals et al.

Given an image I and sentence description S in the
training set, we choose our parameters by maximiz-
ing the probability of a correct description given the
image:

θ∗ = arg max
θ

∏
(I,S)

p(S|I; θ)

= arg max
θ

∑
(I,S)

log p(S|I; θ)

We can then model the probability of each sentence
given an image as

p(S|I; θ) =

N∏
t=0

p(St|I, S0, . . . , St−1; θ)

It is natural to model this probability with an RNN,
where the words we condition on are represented as
memory ht. After we see a new word, the memory
is updated as ht+1 = f(ht, xt). We need only de-
cide what the xt’s will be, as well as the form of f .
For the xt’s, we follow Vinyals et al. We append a
fully-connected layer of length L to the top of our pre-
trained CNN feature extractor and feed this into the
RNN at time t = −1 as x−1. Then, for each subse-
quent time step (starting with the <BEGIN> token at
t = 0), we feed in the word embedding of length L
of the subsequent word in the caption, and the RNN
outputs the probabilities of the next word being any
of the words in the vocabulary. That is,

x−1 = CNN(I)

xt = WeSt, t ∈ {0, . . . , N − 1}
pt+1 = RNN(xt), t ∈ {0, . . . , N − 1}

We found L = 128 to work well and also train rela-
tively quickly.

This setup lends itself to the following loss function for
each (image, caption) example pair.

J(I, S) = −
N∑
t=1

pt(St)

The total loss function is the sum of these over all the
training example pairs. The loss function is minimized

with respect to all the parameters of the RNN (de-
scribed below), the fully-connected layer that embeds
images, and the word embeddings We.

We also have to choose f . In Vinyals et al., a Long
Short-Term Memory (LSTM) unit is used. In our
implementation, we found this choice to work well
when training the model on the entire dataset, but
for smaller subsets of the dataset, the Gated Recur-
rent Unit (GRU) was found to work better. Figure 1
illustrates the difference between these units.

Figure 1. Illustrations of LSTM (left) and GRU (right)

To predict the caption for an image, sample the model
directly; that is, we feed in the image x−1 = CNN(I)
at t = −1, and the learned word embedding for the
<BEGIN> token at t = 0; that is, WeS0. Then, we let
St+1 = arg maxS RNN(xt) and stop once we sample
the <END> token; that is, we choose the highest proba-
bility word at each time step. The original model pre-
sented in Vinyals et al. uses beam search rather than
sampling to construct the caption. Sampling words
works reasonably well and is very efficient, but it is
definitely worthwhile to implement beam search in fu-
ture work.

4. Results

4.1. Image Classification

We ran each of the final models described above (after
tuning hyperparameters manually) on the Tiny Ima-
geNet dataset for 200 epochs.

For comparison, we also ran each of the models on both
the MNIST and CIFAR-10 datasets for 100 epochs,
which we found was enough for convergence. The re-
sults are shown in Figure 2.

We can see that as we add convolutional layers and
increase the depth and complexity of the model, the
performance of the model increases as well.



Convolutional Neural Networks for Image Classification and Captioning

Figure 2. Image classification results.

Model Tiny ImageNet CIFAR-10 MNIST

Softmax (baseline) 1.3% 34.5% 92.6%
MLP 3.4% 49.1% 98.2%
LeNet 17.2% 66.4% 99.2%
CNN1 16.5% 66.8% 99.3%
CNN2 20.6% 72.2% 99.6%
CNN3 17.5% 60.7% 99.1%
CNN4 27.2% 64.9% 99.4%
CNN5 32.3% 74.5% N/A

4.2. Image Captioning

We ran the image captioning model with a pre-trained
VGGNet as a feature extractor described above, with
both GRUs and LSTMS. For each model, we first
trained it on a subset of 600 images from the Flickr8k
dataset, and then on the complete training set of 6000
images.

It is clear that RNNs need a lot of data to train,
and even this amount of data is not sufficient to
achieve completely state-of-the-art results. To match
these state-of-the-art models, it is necessary to use the
Flickr30k dataset, or the still larger MSCOCO dataset.
In future work, this should definitely be done.

However, through our experiments, we found that
when using the smaller training set of 600 images, us-
ing a GRU gave better captions than using an LSTM,
although LSTMs are much more prevalent in the liter-
ature. We did validate, however, that given the entire
dataset, using the LSTM did result in better captions.

Some example captioning results are shown for the
GRU model trained on 600 images in Figure 3 and
for the LSTM model trained on 6000 images in Fig-
ure 4. We ran a BLEU evaluation for the final LSTM
model and found that it achieved a BLEU score of
21.0, which is not quite at the state-of-the-art.

However, more computational resources and power
would allow for more extensive hyperparameter tun-
ing, fine-tuning of the VGGNet model, and training
for more epochs. This would boost the results to be
up to par with current research.

5. Conclusions

The first major conclusion from this project is that
deep learning is an extremely powerful tool. The rep-
resentative power of neural networks is amazing, and
they have been specialized for use in computer vision

and natural language processing, turning tasks that
appear very hard, or even impossible, into reasonable
ones.

Another major conclusion is regarding factors that
greatly influence the performance of neural networks.
We have seen that in CNNs, the depth of the model
has a strong correlation with performance. Tuning hy-
perparameters also proved to boost the performance of
CNN models by a good amount.

In addition, we have seen many ways that neural net-
works can overfit, and how to prevent this. Regulariza-
tion prevents the network from learning large weights.
In the form of dropout, this benefits the training time
as well. Additionally, neural network models possess
highly nonconvex objective functions, so getting stuck
in local optima is a real worry. To battle this problem,
as we have seen, the choice of optimization method as
well as the initial choice of weights is important.

We also noticed that in our particular image cap-
tioning application, Gated Recurrent Units (GRUs)
perform better than Long Short-Term Memory units
(LSTMs) on smaller amounts of data, although
LSTMs performed better on larger amounts of data.
This is potentially just a coincidence, but it is worth-
while to run more experiments in future work to ex-
plore this.

Finally, we have seen that using neural networks with
pre-trained weights have a lot of applications. We
have seen that using a network trained on ImageNet
as a feature extractor is incredibly effective. We have
seen that they can be applied to image captioning, but
they can also be applied to many more domain-specific
tasks like dog breed identification, or retail item classi-
fication. With fine-tuning, this approach is even more
powerful. However, this was too computationally ex-
pensive given our resources, but should be explored in
future work.



Convolutional Neural Networks for Image Classification and Captioning

Figure 3. Sample captions for the GRU model trained on 600 images. From left to right: “the person is going into the
water”, “two dogs in a field are running to catch a tennis ball”, “man playing tennis”

Figure 4. Sample captions for the LSTM model trained on 6000 images. From left to right: “two soccer players are playing
soccer”, “a skateboarder is doing a trick on a fence”, “the dog is running through the water”

6. Acknowledgements

A sincere thanks to Professor Silvio Savarese for the
opportunity to do this project. The amount of knowl-
edge I’ve gained about deep learning through this
project makes me consider it a “class-within-a-class”.
Truly, I learned more doing this project than I have in
entire classes.

Also, thanks to Andrej Karpathy and Professor Fei-Fei
Li for the Tiny ImageNet dataset, and for the excellent
CS231N lecture notes.

References

Cho, Kyunghyun, Van Merriënboer, Bart, Gul-
cehre, Caglar, Bahdanau, Dzmitry, Bougares, Fethi,
Schwenk, Holger, and Bengio, Yoshua. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

Donahue, Jeffrey, Anne Hendricks, Lisa, Guadar-
rama, Sergio, Rohrbach, Marcus, Venugopalan,
Subhashini, Saenko, Kate, and Darrell, Trevor.
Long-term recurrent convolutional networks for vi-
sual recognition and description. In Proceedings of

the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 2625–2634, 2015.

Glorot, Xavier and Bengio, Yoshua. Understanding
the difficulty of training deep feedforward neural
networks. In International conference on artificial
intelligence and statistics, pp. 249–256, 2010.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and
Sun, Jian. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE International Conference
on Computer Vision, pp. 1026–1034, 2015a.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and
Sun, Jian. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015b.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long
short-term memory. Neural computation, 9(8):1735–
1780, 1997.

Karpathy, Andrej and Fei-Fei, Li. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp.
3128–3137, 2015.



Convolutional Neural Networks for Image Classification and Captioning

Krizhevsky, Alex and Hinton, Geoffrey. Learning mul-
tiple layers of features from tiny images, 2009.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geof-
frey E. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

LeCun, Yann, Boser, Bernhard, Denker, John S,
Henderson, Donnie, Howard, Richard E, Hubbard,
Wayne, and Jackel, Lawrence D. Backpropagation
applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and
Haffner, Patrick. Gradient-based learning applied
to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

Rashtchian, Cyrus, Young, Peter, Hodosh, Micah, and
Hockenmaier, Julia. Collecting image annotations
using amazon’s mechanical turk. In Proceedings
of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechan-
ical Turk, pp. 139–147. Association for Computa-
tional Linguistics, 2010.

Simonyan, Karen and Zisserman, Andrew. Very deep
convolutional networks for large-scale image recog-
nition. CoRR, abs/1409.1556, 2014. URL http:

//arxiv.org/abs/1409.1556.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky,
Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Steinkrau, Dave, Simard, Patrice Y, and Buck, Ian.
Using gpus for machine learning algorithms. In null,
pp. 1115–1119. IEEE, 2005.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet,
Pierre, Reed, Scott, Anguelov, Dragomir, Erhan,
Dumitru, Vanhoucke, Vincent, and Rabinovich, An-
drew. Going deeper with convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1–9, 2015.

Vinyals, Oriol, Toshev, Alexander, Bengio, Samy, and
Erhan, Dumitru. Show and tell: A neural image
caption generator. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, pp. 3156–3164, 2015.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

