
Using Computer Vision to Solve Jigsaw Puzzles

Travis V. Allen
Stanford University

CS231A, Spring 2016
tallen1@stanford.edu

Abstract

Many in the computer vision community have written
papers on solving the “problem” of jigsaw puzzles for
decades. Many of the former papers written cite the po-
tential extension of this work to other more serious endeav-
ors like reconstructing archaeological artifacts or fitting to-
gether scanned objects while others simply do it because
it’s an interesting application of computer vision concepts.
This author falls in the latter camp. Several methods for
constructing jigsaw puzzles from images of the pieces were
considered from a theoretical standpoint before the comput-
ing power and the high-resolution image capturing devices
necessary to employ these methods could be fully realized.
More recently, many algorithms and methods tend toward
disregarding piece shape as a discriminant entirely by us-
ing “square pieces” and rely instead on the underlying im-
age properties to find a solution. The jigsaw puzzle solver
described in this paper falls somewhere in between these
two extremes. The author of this project paper describes
the creation of an “automatic” jigsaw puzzle solving pro-
gram that relies on multiple concepts from computer vision
as well as past work in the area to assemble puzzles from
a single image of the disassembled pieces. While the pro-
gram is currently specifically tailored to solve rectangular
puzzles with “canonical” puzzle pieces, concepts learned
from this work can be used in concert with other computer
vision advances to enhance the puzzle solver and make it
more robust to varying piece and puzzle shape. The puzzle
solver created for this purpose is fairly unique in that it uses
a picture of the disassembled pieces as input, no reference
to the original puzzle image, and is done using the Mat-
lab Image Processing Toolbox. The solver created for this
project was successfully used on five separate puzzles with
different rectangular bounds and dissimilar puzzle images.
These results are similar to others who have created simi-
lar puzzle solvers in the past. Ultimately, the author hopes
that this work could lay the groundwork for a smart phone
application.

1. Introduction

This project focuses on the creation of an end-to-end
“automatic” jigsaw puzzle solving program that assembles
a jigsaw puzzle using an image of the disassembled puzzle
pieces. The solver does not use the picture of the assembled
puzzle for matching purposes. Rather, the solver created for
this project attempts to solve the lost the box conundrum by
displaying the assembled puzzle to the user without the need
for the reference image. Needless to say, this program was
created with an eye toward a potential smart phone applica-
tion in the future. It should be noted that the puzzle solver
is created entirely in Matlab and heavily utilizes functions
found in the Matlab Image Processing Toolbox.

Solving jigsaw puzzles using computer vision (CV) is an
attractive problem as it benefits directly from many of the
advances in the field while still proving to be both challeng-
ing and intellectually stimulating. Due to time constraints,
manpower limitations, and the fact that I had little to no
prior experience with many of these concepts and the Mat-
lab Image Processing Toolbox when beginning this project,
several assumptions about the problem were made up front
in order to make it simple enough to solve in the time given.
The primary assumptions and limitations are as follows:

1. The pieces in the source image do not overlap nor do
they touch.

2. The source image is captured in a “top-down” manner
with minimal perspective distortion of the pieces.

3. The pieces in the source image comprise one entire
puzzle solution (you can not mix and match pieces
from other puzzles).

4. The final puzzle is rectangular in shape and all pieces
fit neatly into a grid.

5. The pieces of the puzzle are standard or “canonical”
in shape – this means they are square with 4 distinct,
sharp corners and four resulting sides.

1



6. All intersections of pieces in the puzzle will be at the
corners of the puzzle pieces and all internal intersec-
tions will be at the corners of four pieces.

7. Each side is characterized by having a “head,” a “hole,”
or by being “flat.”

In the following paper, I will discuss the previous work
that has been done in this area in section 2, emphasizing
those papers that most influenced the methodology I fol-
lowed for my puzzle solver. I will then describe my tech-
nical approach to the problem and how my puzzle solver
works in section 3. In section 4 I will show some of the
results obtained with the puzzle solver so far and discuss
both the experimentation that has been conducted and ar-
eas where more experimentation could occur. Finally, I will
wrap things up in a conclusion in section 5.

2. Related Work
As one can imagine, such a problem as solving jigsaw

puzzles might attract a good number of people in the com-
puter vision community. And indeed it has. The problem
has been considered for decades, going back to H. Free-
man, and L. Gardner [2] in 1964. They first looked at how
to solve puzzles with shape alone. Then there’s H. Wolf-
son et al. [4] who describes the very matching methodology
that I use. He is able to assemble a 104 piece puzzle us-
ing his method in 1988. While I do not solve a 104 piece
puzzle, their solution requires individual pictures of each
piece, though he does solve it with shape alone. One area
where his method is different than mine is that it can handle
two intermixed puzzles, whereas mine can only handle the
pieces from one at present. D. Goldberg et al. [3] expanded
on Wolfson’s work and developed an even more global ap-
proach to solving jigsaw puzzles – their method allowed for
the solution of puzzles that did not necessarily intersect at
corners. My inspiration for color matching across bound-
aries comes from D. Kosiba et al. [5] who propose methods
for using color in addition to shape in 1994.

Some insight into how to use Matlab to help solve this
problem came from some detailed student papers that were
found with a Google search. A. Mahdi [8] from the Univer-
sity of Amsterdam and N. Kumbla [6] from the University
of Maryland both attempt the problem using methods sim-
ilar to what I end up using, though neither ends up with
quite full and satisfactory solutions and both rely on high
resolution and highly controlled inputs. Finally, my inspi-
ration for creating a smart phone application comes from
L. Liang and Z. Liu [7] from Stanford who do not use the
same matching methodology (they use the actual image of
the fully constructed puzzle and SURF/RANSAC), but who
do try to implement their solution in a real-time smart phone
application. This is a possibility in the future for my puzzle
solver.

Lastly, a former student of CS231A, Jordan Davidson
[1], did his project in this very area, though it was in a
slightly different vein. He looked at a genetic algorithm that
could solve large “jigsaw” puzzles with square pieces that
used the information from the pieces to determine if it had
found the correct match. While the algorithm is interesting
and probably applicable on some level to my puzzle solver,
it was not quite what I was looking to do for this project.
Jordan’s work appears to be in an area that is growing with
others attempting to solve larger puzzles of this kind. Per-
sonally, I wanted to solve the puzzles as they are seen and
manipulated in real life. Most of this area of research has
other applications and was not quite what I was looking to
do. Though, as I said, there is definite applicability of some
of the algorithms to my ultimate solver and future iterations
may look at something like the algorithm explored in Jor-
dan’s paper.

3. Puzzle Solver Technical Approach
Creating a program to construct a puzzle using an im-

age of the pieces requires a number of steps, each of which
can be executed in a number of ways. In this section, I will
describe the methods I used in my final code, but will also
discuss alternatives that were either attempted with subop-
timal results or that were not used but could be in future
iterations.

3.1. Image Capture and Segmentation

In order to capture the pieces to be assembled into a
final puzzle, I used a fairly high resolution camera – a
Canon Rebel T4i DSLR with 18.0 Megapixel resolution.
The pieces were placed face up on an easily segmentable
background (i.e. a “green screen”) with great care taken to
ensure they were not overlapping (see figure 1 for an exam-
ple using the Wookie puzzle). The picture was taken from
a “top-dead-center” position looking straight down onto the
pieces in order to reduce perspective distortion. Lighting
was kept as neutral as possible with consideration given to
sources of glare and to the possible disproportionate light-
ing of some pieces over others. With more time, the abil-
ity to compensate for off-axis image capture of the pieces
(i.e. rectification to the ground plane) could be built into the
code, though that was not explored for the current incarna-
tion of the solver.

As discussed earlier, with an eye toward an eventual
smart phone application, the first step I take is to signifi-
cantly reduce the resolution of the input image from that of
the original in order to shrink the memory burden and make
the resulting image more comparable to one that might be
obtained with a smart phone. Once I have resized the image
(960x1440 was the main resolution used for the test cases),
I use a Gaussian filter (with σ = 1) to blend the edges prior
to the actual segmentation.

2



Figure 1. Input Image for the Wookie Puzzle

Since segmentation can be done in a multitude of ways,
the approach I use is to put the pieces on a solid green screen
background and segment based on color. This has been
done for ease and efficiency since segmentation is not the
entire focus of the project. However, as with the additional
adaptation of the code to varying image capture angles, it
would be entirely possible to segment the image using other
means, such as the mean shift or normalized-cut methods
used in class. These other methods have the potential to
make the code more robust to varying backgrounds, such
as wood table tops or off-axis image capture. These meth-
ods were considered, but were not completed since the puz-
zle assembly was considered more important to the overall
program completion.

The primary result of the segmentation is a binary mask
that we use to obtain the location and extent of the individ-
ual pieces using the bwconncomp and bwregionprops
Matlab functions. There are provisions in the code for
cleaning up somewhat imperfect masks that may have re-
sulted from additional specks of dirt blocking the green
background or when the green background does not fill the
entire image and there is a segment along an edge where the
true background (i.e. the floor or table) peeks through.

3.2. Puzzle Piece Characterization

Once the pieces have been segmented from the back-
ground and a binary mask created, the individual pieces are
broken down further and many traits are extracted that will
be used in later matching.

The first step is to define the corners. As per the as-
sumptions about the puzzle pieces used, each piece has four,
well-defined corners with an angle approximating 90 de-
grees. Several approaches for extracting either the corners
or the sides were attempted before ultimately landing on
the method used in the puzzle solver. One of the meth-
ods involved using the Hough transform to find the pre-
dominant direction of the points along the border while an-
other found in [5] involved the conversion of the borders

Figure 2. Polar Plot of Boundary for One Puzzle Piece

XY-coordinates to polar coordinates and then using this in-
formation to find the predominant direction of the points,
taking the average of the intersection, and then taking the
closest point on the boundary. While these methods may
have eventually been adapted for my purposes, I had is-
sues getting them to work consistently and instead landed
on a method based on the one presented in [6] where I con-
vert the border points to polar coordinates and use the Mat-
lab function imregionalmax to find peaks in the data
(other matlab functions were tried, but did not return as fa-
vorable of results). See Figure 2 for a visualization of what
is returned for an individual piece. Unfortunately, since the
border is somewhat noisy, there are many more peaks than
actual corners or heads. Thus I wrote a script that steps
through the peaks, consolidates the multiples to the true
peak in the θ region, and tries to discriminate whether the
peak is a corner or a head and, if a head, eliminates the peak.
The script then goes in and uses the remaining peaks to de-
termine the corners, which are two sets of peaks separated
by 180 degrees that alternate.

Once the four corners of the piece are found, the sides of
the piece are simply taken to be the points along the bound-
ary between each set of two corners. The next most signifi-
cant task is to assign each side of each piece as a head (+1),
a hole (-1), or flat (0), see Figure 3 for a visual. This can
be done in many ways. The original method I used would
take the points along the edge in XY-coordinates, re-align
them such that the two corners each lie on the x-axis, and
then take the integral. If there was significant area either
above or below the axis created by the two corner points,
then the side could be declared either a head or hole, other-
wise it was considered flat. However, there were issues with
this method that were brought to light when experimenting
with one of the puzzles. Specifically, there was difficulty
setting a specific pixel integral threshold for all of the sides
when the piece was more rectangular than square. One so-

3



Figure 3. Example Piece with Labeled Sides and Example Color
Patches

lution to this problem was to divide the resulting integral by
the length of the side, but even that did not completely solve
the issue. So instead I developed a new method that uses the
“height” of the midpoint of the side relative to the x-axis as
defined by the rotated side. If the height is beyond a certain
threshold, it could be considered a head or hole. Otherwise
it is considered a flat side.

Once the sides of the piece are determined and the infor-
mation stored, the next step is to gather color information
about the piece that will be used in the matching process.
By using the mask created by the individual piece, I can
use Matlab functions to back out intensity levels for indi-
vidual color channels for the entire piece. At first I grabbed
a lot of information, and much of it is still in the code. This
includes average, minimum, and maximum intensity levels
for each of the RGB color channels as well as each of the
HSV color channels. After rather exhaustive experimen-
tation with the matching algorithm, however, most of this
information proved to be hit or miss when it came to true
color coordination across pieces. Since this is information
about the entire piece, it is primarily used to find regional
likeness in the final puzzle image. After doing some re-
search, one method for finding how similar two colors are
in the spectrum is by calculating the ∆E, which requires
the color values to be in CIE’s L*a*b* color space. So, ul-
timately, the color values for each piece are translated to
this color space and the average “intensity” in each of those
channels is found and stored.

Not only do I store color information about the entire
piece, but also color information along each edge. Using a

method similar to [5], I identify small patches of pixels (I
found three, 2x2 patches to work well) distributed evenly
along the edge, grab the average L*a*b* color information
in each of the patches, and store it for the matching process
(see figure 3 for an example). Of course, I only do this
along the edges with holes and heads – this is unnecessary
along the flat edges. As with the piece information before,
I also gather the HSV values for each of the patches, but
no longer use them in the matching process after receiving
mixed results.

3.3. Puzzle Assembly

When discussing the puzzle assembly, I have decided to
break the process down first and foremost into “global” ver-
sus “local” assembly, and then break the “global” assem-
bly down further into two distinct areas of the puzzle: the
border pieces and the inner pieces. This is a method that
is discussed and accomplished in most of the papers I re-
viewed, but specifically discussed in [4] and [3] and seems
like a reasonable approach to the problem. It also seems
like a logical approach given how one might go about solv-
ing a jigsaw puzzle in the physical world. As such, I will be
breaking this section into subsections along those lines, be-
ginning with the discussion on how two pieces are matched.

3.3.1 Local Assembly – Piece-to-Piece Matching

I am beginning the discussion on how the puzzle is as-
sembled by describing the method by which the pieces are
matched to one another. While the algorithm works slightly
differently whether we’re assembling the border or we’re
assembling the inner pieces, the specific match parameters
remain the same. I will describe the general case of two
pieces being matched together and then discuss the specific
nuances for each of the two global situations.

What this algorithm is ultimately trying to find is a
“match” between the edge of one piece and the edge of an-
other piece. A “match” is defined as two pieces that “fit”
together. Ideally, the two pieces that “fit” the best would
also be the “correct match,” so one would think that if the
head of one piece is similar to the hole of another piece,
they would fit and we could move on. However, when try-
ing to do this process with little to no human input, finding
the correct match is not as easy as finding two shapes that
are simply the inverse of one another. Especially when one
throws in measurement noise due to imperfect segmentation
and image distortion. So instead, I try to use additional in-
formation about each piece in order to try and compute a
“score” for a potential match.

After extensive experimentation, the factors that two
neighboring pieces appear to have most in common are side
length, color along the edge, and overall piece color. Ad-
ditionally, I looked at the difference between the overlaid

4



curves along each edge to determine an average overlap (or
gap) – obviously the smaller the overlap or gap, the bet-
ter the match. With these factors in mind, here is how the
matching algorithm works.

Once the algorithm determines the two pieces and the
side of each piece to be matched, it first checks to make
sure one is a head and one is a hole. If not, the match is
discarded. It then compares the side lengths and the in-
tegrals along each edge. If the difference in side lengths
is significant (beyond approximately 10 pixels for the stan-
dard resolution image), the match is discarded. The integral
of the curve along each edge is compared. If they are not
approximately equal and opposite, the match is discarded
(the threshold for this varies based on image resolution –
turns out it is not the best method for weeding out candidate
matches so it is not the most strict). Next, the overlap is cal-
culated by overlaying the two edges in XY-coordinate space
and taking the difference (using pdist). The result is the
overlap, or gap, between the two pieces. If the average,
minimum, or maximum overlap is beyond specific thresh-
olds based on image resolution, then the match is thrown
out. Once we’ve looked at the basic shape discriminants for
determining whether a match is likely correct, we then look
at the color discriminants and determine the ∆E. We do this
both from a regional perspective (piece to piece) and from
an edge perspective (using the patches along the edge). ∆E
is essentially the “distance” between two colors in the color
spectrum and is determined using the following formula:

∆L∗ = L∗
1Avg − L∗

2Avg
(1)

∆a∗ = a∗1Avg − a∗2Avg
(2)

∆b∗ = b∗1Avg − b∗2Avg
(3)

∆E =
√

∆L∗2 + ∆a∗2 + ∆b∗2 (4)

The ∆E is found for each pair of patches along the edge
and the average of those patch values is used. Obviously,
the lower the ∆E, the closer the colors are in the spectrum.

Once we’ve computed and captured these shape and
color comparisons and have weeded out obviously bad
matches, we then compute a match “score.” This score
is found using experimentally determined weights that are
multiplied by the four key matching criteria: side length
difference, overlap difference, ∆E along the edge, and ∆E
between the pieces. Since these values tend to vary widely
between matches and puzzles, the standard range of values
found for “correct” matches on one of the test puzzles was
used to develop a set of weights that somewhat normalizes
each parameter so that one specific criteria is not favored too
much more than another. For most correct matches, when
multiplied by the weights, the values should be no greater
than 100. This means that, theoretically, a correct match
could have a total score of up to approximately 400. How-
ever, in reality, most correct matches have low scores in at

least two of the categories, so a score threshold of about
280 (again, experimentally determined) can be set in order
to weed out incorrect matches.

Once the local matching algorithm has pared down to a
final set of scored matches, it then returns these matches to
the global algorithm in score-priority order. The primary
nuances that differ between local matching for the border
versus the inner pieces is the orientation of the piece. As I
will soon discuss, the border pieces are aligned according
to the flat edge, so the local matching only considers one
potential edge for each piece. And, because the border is
being matched in the absence of the rest of the puzzle, the
local matching algorithm does not have to consider any ad-
ditional sides from other pieces that may come into play.
Not so for the inner pieces. For the inner portion of the puz-
zle, a piece is being matched to a slot in a grid, and that
slot has neighboring sides. As will soon be discussed, the
local matching algorithm will always have at least two sides
for each internal piece, but could have upwards of three or
four to consider depending on the location of the slot and
what pieces have been matched so far. In the inner case, the
local matching algorithm has to ensure that the heads and
holes all line up first, as before, but then determines all of
the matching metrics per side and takes the average over the
number of sides. The major difference here is that a single
piece could fit into a slot in multiple ways, so piece orienta-
tion must be accounted for and the piece must be rotated in
all valid configurations before the algorithm returns a set of
matches. A single piece could potentially have four possi-
ble “matches” to a single slot, depending on hole/head ori-
entation. The match thresholding and scoring are the same
across pieces and edges in the inner piece matching as in the
border matching, the only true difference being that they
are averaged across each piece/edge to which the piece is
matched in the inner matching (which is unnecessary in the
border case).

3.3.2 Global Assembly – the Border Pieces

It is logical to begin the global assembly with the border
because the border pieces are distinct – they each have at
least one flat side. Since the piece matching algorithm is not
perfect and does not always return the “correct” match as
the “best” match, a so-called “greedy” algorithm that sim-
ply places the “best” match between two pieces in the next
available slot will not necessarily result in a coherent solu-
tion (i.e. one might get something that is non-rectangular
or even nonsensical). In order to provide for this possi-
bility while not resorting to a “brute-force” approach that
runs through every possible combination of pieces, I de-
cided to use a so-called “branch-and-bound” algorithm, nor-
mally used in the solution of the Traveling Salesman Prob-
lem (TSP). In the general description of the TSP, a salesman

5



needs to do business in a number of cities spread out over a
region with defined distances between each. The salesman
wants to find the shortest overall route that goes to every
city only once and returns to his starting point – thus its a
distance minimization problem.

Much like the TSP, each match made between two pieces
along the puzzle border is given a score. Once a solution
is found, the total of all of the match scores that make up
that border solution should reflect how good the solution
is. Ideally, the smallest overall score will be the best and
correct solution. However, that turns out not always being
the case, as will be discussed.

Since there are many ways of reaching a solution, we
need a way of capturing a large number of possible solu-
tions and then finding the best one of those potential so-
lutions. One way of doing this is the branch-and-bound
method. This algorithm will be discussed shortly, but first I
will describe the greater methodology for how the border is
constructed.

The general construction of the border begins with a
corner piece. We orient the piece such that the counter-
clockwise-most flat side is “down,” with the other flat side
to the “left” and a head or hole to the “right.” Matching is
then done to the “right” in a sequential manner. The local
matching algorithm, then, receives a left piece and a list of
possible right pieces, all with the flat side down. It returns a
list of potential right pieces. We then choose one of the right
pieces to be the new left piece and continue the process until
we run out of possible right pieces. As we progress around
the border, when we hit another corner, we rotate the en-
tire puzzle and continue as if the flat side of each piece is
“down.”

Now, since the potential number of solutions is (n− 1)!
where n is the number of border pieces, we want to con-
strain the number of solutions found through whatever
means necessary. The local matching algorithm does a good
job of weeding out very poor matches, but will still return
multiple potential matches that could lead to a nonsensical
full solution. In order to combat this we also place a set of
side length constraints on the puzzle such that the border
solution must have side lengths corresponding to a rectan-
gular puzzle. If we’ve gone too long without a corner piece
or if we get sides defined by corner pieces that do not equal
one another, the solution is thrown out and we search for a
new one.

After all of this preamble, I am now going to describe
the basic branch-and-bound algorithm that is used for the
border matching problem. The algorithm can be described
in the following manner:

1. Choose a starting piece (usually a corner) and call it
piece A.

2. Use piece A to find a set of potential matches – these

can be considered “children” or “branches.”

3. Since the local matching algorithm returns a rank-
ordered list of potential matches, start with the first
potential match as piece B.

4. Next, remove piece B from the list of pieces remaining
to be matched and make piece B the new piece A.

5. Use the new piece A to find more potential matches.

6. This process continues until one of the following oc-
curs:

(a) We run out of pieces remaining – in this case we
have found a solution or “leaf.” We store this set
of matches and their scores as a solution, back
up, and see if we can find more solutions.

(b) We run into a border constraint that isn’t satisfied
– in this case we back up and see if another match
does satisfy the border constraint before moving
on.

(c) We do not get any potential matches for the cur-
rent piece A – in this case we need to back up and
see if we can find another path using a different
piece from an older set of potential matches.

The algorithm either runs until it has exhausted the search
space and found all possible solutions based on both the side
constraints and the local matching thresholds, or until it has
obtained the number of solutions requested of it. As can
probably be surmised from the basic description above, one
can visualize this approach as a tree with the first piece at
the root and branches extending upward for each potential
match. If we are able to make it all the way up a branch to
a leaf, then we have found a solution to the problem. If we
get stuck on a branch and can’t expand, we come back down
the tree until we find another path that looks fruitful. In this
way we can reduce the total number of solutions tried to
well below that which would be found through simple brute
force.

As one can see, because the problem is being solved in
a nonlinear fashion, the number of solutions that might be
found before the “correct” solution is highly dependent on
several factors, not least of which are the first piece cho-
sen and how well the first few pieces match. If incorrect
matches are made early in the process, it can take a long
time (and a lot of matches) before the correct solution is
found. And even when the correct solution is found, it may
not be the “best” solution as per the scoring system. Ideally
the “best” and “correct” would be the same, but that is not
always the case.

6



3.3.3 Global Assembly – the Inner Pieces

Once a border solution is found, it is passed to the global as-
sembly for the inner pieces. The global assembly algorithm
assembles the border pieces into a grid and then grabs the
“upper left” open slot as the new “piece A.” This algorithm
also creates a grid with relative orientations for each piece.
When the pieces were first characterized, they were each
oriented with “side 1” being “up.” Once they are placed
in the final puzzle grid, we create a second grid with the
same dimensions that provides the relative 90 degree rota-
tion from “up” for each piece (0-3). Because we know we
have the border completed, we can be assured that that first
slot will have at least two pieces along its edges. The more
pieces along an edge, the more accurate and discriminating
the score should be. The inner piece matching algorithm
then uses a similar branch-and-bound algorithm as in the
border case to find potential matches for this first slot. It
then removes the piece from those remaining and moves
across the puzzle filling in all available pieces from left to
right and then top down (like reading a book). Unlike in the
border case, however, the potential matches could involve
the same piece, just oriented differently. For this algorithm,
orientation is very important. As with the border assembly
algorithm, once all of the pieces are found, that solution is
stored and we then back up and see if we can find more until
either we run out of solutions or we have found the number
of solutions desired. Ideally, the solution with the lowest to-
tal score (aka the “best” solution) will also be the “correct”
solution.

One last note about the global assembly algorithms:
while it might make sense to have the two algorithms sepa-
rate during developing and while trying to understand where
each breaks down, the ideal case would be to combine these
algorithms in order to weed out border solutions that do not
provide for full puzzle solutions. This was thought about,
though not implemented in the final code. Had there been
more time, this would have helped to bring down the to-
tal number of end puzzle solutions. As it was, in the time
allowed, I was simply able to get both of these algorithms
working well enough to tweak the various variables to see
how best to find matches. The next step would be to link
these two algorithms and throw out border solutions that
have no potential solutions based on all of the criteria dis-
cussed above.

3.4. Final Image Construction

Once we have assembled all of the pieces into a grid
with their relative orientations, we now have the solution
to the puzzle. The next step is displaying that solution
to a user. Ideally, I would like to display a completed
and fully stitched together puzzle image using the puzzle
pieces as segmented from the original image. While this
is most likely possible using the Matlab Image Process-

Puzzle Total Border Border Inner
Name Pieces Pieces Soln Soln
Wookie 12 10 1st 1st
Storm Troops 24 16 58th 5th
Droids 12 10 1st 1st
Speeder 16 12 1st 1st
Rey Finn 12 10 1st 1st
Kylo Ren 24 16 N/A N/A

Table 1. Test Puzzle Results

ing Toolbox, it was not completed in a satisfactory man-
ner by the end of this project. Instead, I use the func-
tions vision.AlphaBlender and step along with the
piece masks and the cropped segmented pieces from the
original image to create a quasi-final image “grid” that
shows the extracted pieces oriented per the solution. It’s
not ideal, but it at least shows how the final pieces should
be laid out and arranged. For reference, see figure 4 for an
example of the final solution.

4. Experimentation and Results

I ran my puzzle solver in Matlab on both a home PC with
4 year old hardware (6 GB RAM, Intel i5 processor, AMD
Graphics Card) and a 13-inch MacBook Air, 2015 model
with 4GB memory and Intel Graphics with little difficulty.
It takes about a minute or so to run one of the test puzzles
(it might take more than a minute for the 24 piece puzzles)
from image segmentation through to final construction. I
carried a good amount of information in memory through-
out the process since I was doing a lot of experimentation
and wanted the ability plug and play various modules for
both fine-tuning and debugging. This could be pared down
for a future implementation.

While the puzzle solver created for this project cannot be
used on every puzzle (per the limitations noted earlier), for
those it could be used on, I was able to experiment to find
limitations and weaknesses. I also used this experimenta-
tion to find the best criteria for matching.

For this project I tested the puzzle solver on six Star
Wars themed children’s puzzles that I bought at Target. The
overview of the results using the final matching parameters
are in Table 1.

As one can see, most of the puzzles had 12 to 16 pieces,
except for two that had 24 pieces. Of all the puzzles that
had less than 24 pieces (four of the puzzles), the correct
border solution was the best border solution returned, by
score (hence the “1st” in the third column). Then, using the
correct solution as the lead-in to the inner puzzle algorithm,
those same puzzles found the correct solution to be the one
with the best score.

For the Storm Trooper puzzle, there were two primary

7



factors that led to it not doing as well. First, there are more
pieces and therefore more potential matches. Still, if the
matches were registering scores that reflected the true “cor-
rectness” of the match, then one would expect the overall
score of the completed border to be better than 58th. And,
even when we fed the correct border solution to the in-
ner puzzle algorithm the correct solution was 5th best by
score. However, to put this into perspective, the global bor-
der solution algorithm returned in excess of 2000 potential
border solutions for the storm trooper puzzle (of a math-
ematically potential 15!, approximately 1.3 trillion, solu-
tions with brute force), of which the correct one was 58th
by score. Which isn’t all that bad. Additionally, the storm
trooper puzzle was by far and away the most homogeneous
in terms of color of all the puzzles. It was very difficult
to discriminate matches based on color using the methods
I described before, especially because of the way the storm
trooper line discontinuities happen to match up along the
border of the pieces, making cross border color matching
very difficult indeed. And finally, the pieces were fairly
square, so all four sides were very even and comparable in
length. If they were instead more elongated with one pair
of sides longer than the other, the side length discriminant
would have knocked down potential matches.

This was a case where the experimentally determined
match scoring algorithm broke down. While it worked in
the other test cases very well, one can see quite clearly that
other methods would need to be pursued in order to get the
storm trooper puzzle to be solved correctly.

The other puzzle in the table that was looked at as a test
case but does not have a rank for a solution is the Kylo
Ren puzzle. This puzzle highlighted the need for a better
corner-finding or edge-finding process. While the code I
developed to find the corners repeatedly on the other puz-
zles worked quite well, the pieces of the Kylo Ren puzzle
were extremely elongated and many of the “heads” were so
small as to be mistaken for corners. Needless to say, the au-
tomatic corner-finding was not able to find the corners, and
without them the rest of the algorithm just doesn’t work as
is.

When experimentally determining the criteria to use for
the piece matching, individual matches were observed with
special attention paid to the values for correct matches. The
Wookie puzzle was used as the baseline case and the val-
ues derived from this puzzle were applied to the others with
general success (except for the Storm Trooper puzzle). Here
were the typical values and the final weights applied:

• Side Distance Difference: 0-8 pixels (wt = 12.5)

• Overlap Average Difference: 0-14 pixels (wt = 7.0)

• ∆E Patches: 7-45 (wt = 2.9)

• ∆E Pieces: 4-35 (wt = 3.2)

While it would logically seem, and in most cases it would
actually be, that matching the color patches across the
boundaries should be one of the best ways to discriminate in
order to find a true match, due to the variability in how the
puzzle pieces are carved up, this was not always the case.
For instance one piece was carved almost perfectly along
Wookie’s nose, which is dark, and just on the other side of
the edge there was a bright background. The ∆E in this
case was fairly large even though the match is a correct one.
In fact, this was also a case where the puzzle pieces had a
small ∆E between them, but the patch difference was much
higher. This is not an expected result. And while one might
begin to think that maybe color is too volatile and should
not be considered at all since the perceived variability in the
shape is much smaller among true matches per my above
list, that is not entirely accurate. Due to noise and distor-
tion, the actual length of the sides and the measured overlap
is not exact. And while the correct match is always small,
so are many other matches. These criteria are best for weed-
ing out those pieces whose shape isn’t even close to correct.
It can also help when the head of one piece is bent in one
direction while the hole of the other piece is expecting it to
be bent in another – then the overlap will suffer. For the
most part, however, the size helps get you close. Unfortu-
nately, many of the pieces have differences that fall within
the acceptable ranges above. That is why color is then used
to help with the ranking of those potential matches. And
in most cases, the color does help. There are just a few in
every puzzle where there are large transitions in both the
puzzle region or just along the border that cause the match
scoring to return some interesting values.

Additional parameters that were used early on for color
scoring were RGB and HSV channel averages. While in
some cases there was clear correlation, in many others there
didn’t appear to be any correlation whatsoever. Color vari-
ance was also considered, though it was also disregarded
because, after some thought, I could not see how it would
return a marked improvement. The extreme variability in
the color scoring led to a rethinking about how the colors
were being compared and the eventual use of ∆E.

Additional methods for finding border matches that were
considered but were unable to be implemented before this
report were:

• Segmentation along the border (such as meanshift) –
if we could determine there are a certain number of
segments along one border that coincide with a cer-
tain number of segments along another, then maybe
we could find a potential match.

• Find lines along a border that break at the border, then
look for the continuation of these lines on the other
side. Would have something to do with the flow of
pixels – seems difficult to implement, though would

8



really help with the Storm Trooper puzzle.

• Grab features within the head piece or along the edge
and build a Bag of Words model. Then try to find
matches on the other side of the piece around the hole.
This has potential, but is potentially computationally
expensive.

While the matching algorithm used isn’t perfect, it worked
for the test cases considered. And while others may have
been able to solve larger puzzles [4][3] with their algo-
rithms, my code proved to be fairly robust and efficient at
solving the puzzles provided. Since there appear to be no
standardized “jigsaw puzzle metrics” against which to com-
pare by puzzle solver for puzzles with irregular shapes, I
cannot say exactly how my puzzle solver compares to oth-
ers that have been developed. However, it is one of the few
that I’ve seen that takes a raw image of all of the pieces
at once and produces a fully constructed solution. Most of
the puzzle solvers found in official papers and in student
submissions cited earlier produce only partial or theoretical
solutions, or solutions that require even greater initial con-
straints than my own (i.e. the pieces have to lie in a grid at
the outset or each piece has to be scanned individually with
a high resolution scanner). Still others rely on the original
image to find the location of the pieces in the final image,
which is not the problem I set out to solve. One example
using the Wookie puzzle can be seen in with the original
image in figure 1 and the final solution as found by my puz-
zle solver in figure 4.

5. Conclusion
I have created an end-to-end “automatic” jigsaw puzzle

solver that uses Matlab and the Matlab Image Processing
Toolbox to piece together a jigsaw puzzle using only an
image of the pieces. I used this puzzle solver on six test
puzzles and proved that it works on five of them quite reli-
ably, but also found where there were weaknesses in the cur-
rent implementation. Certain design decisions were made
early on that simplified the problem such that I could com-
plete the entire project by the deadline. Unfortunately, this
also meant it was hard to go back and try a completely new
method once I had begun going down a certain path.

I learned a lot over the course of this project. I learned
about how to think about a 3-dimensional, physical world
problem in terms of a 2-dimensional perception of that
problem. I learned how to think about manipulating ev-
ery ounce of information I could glean from a single photo-
graph to help the computer “think” like a human and make
matches that would result in a correct solution. I learned
about many functions inherent within Matlab, especially the
Matlab Image Processing Toolbox. As I developed the pro-
gram, I learned new tools and tricks that, had I known them
earlier, I may have approached certain parts of the project

Figure 4. Solution Created by the Automatic Puzzle Solver

Figure 5. The “Truth” – A Picture of the Assembled Wookie Puz-
zle

differently. This knowledge will certainly be helpful in the
future and could be applied to improving the puzzle solver.

Several of the papers I read where people have attempted

9



this problem in the past did not make much sense to me un-
til I went and attempted it myself. I had believed it would
be easier to extract the corners of the four-sided pieces, and
therefore decided to go with canonical piece jigsaw puzzles.
However, this then meant I was fairly limited in the types
and numbers of puzzles to which my program could ap-
ply. It also meant that extraction of this information was ab-
solutely essential to everything my program did afterward.
Some of the other methods, like the use of fiducial points
as in [3], may have proven more difficult at first, but could
have paid dividends in its ability to scale.

If my original end goal was to create a program that be-
gan to explore the possibility of creating an automatic jig-
saw puzzle solver smart phone application, which was the
original idea, then I believe I have achieved a pretty great
stride in that direction. However, my code is not yet robust
enough to the kinds of inputs a smart phone might provide,
nor is it efficient enough in both memory allocation and
processor requirements to be feasible for that application.
Many changes would have to be made before I can get to
that end goal, which is something I realized about halfway
through the project. While I believe I have created a solid
and workable solution within the constraints of the problem
as I originally set forth, I see many areas where it could be
improved for future incarnations. All in all, I did what I set
out to do, I learned a lot, and I enjoyed the process.

References
[1] J. Davidson. A genetic algorithm-based solver for very large

jigsaw puzzles: Final report.
[2] H. Freeman and L. Garder. Apictorial jigsaw puzzles: The

computer solution of a problem in pattern recognition. IEEE
Transactions on Electronic Computers, EC-13(2):118–127,
April 1964.

[3] D. Goldberg, C. Malon, and M. Bern. A global approach to
automatic solution of jigsaw puzzles. Comput. Geom. Theory
Appl., 28(2-3):165–174, June 2004.

[4] A. K. Y. L. H. Wolfson, E. Schonberg. Solving jigsaw puzzles
by computer. Annals of Operations Research, 12:51–64, 1988.

[5] D. A. Kosiba, P. M. Devaux, S. Balasubramanian, T. L.
Gandhi, and K. Kasturi. An automatic jigsaw puzzle solver. In
Pattern Recognition, 1994. Vol. 1 - Conference A: Computer
Vision amp; Image Processing., Proceedings of the 12th IAPR
International Conference on, volume 1, pages 616–618 vol.1,
Oct 1994.

[6] N. Kumbla. An automatic jigsaw puzzle solver.
[7] L. Liang and Z. Liu. A jigsaw puzzle solving guide on mobile

devices.
[8] A. Mahdi. Solving jigsaw puzzles using computer vision.

10


