

1

Abstract

Hand gesture recognition is a technology that is

becoming increasingly relevant, given the recent growth

and popularity of Virtual and Augmented Reality

technologies. It is one key aspect to HCI, allowing for

two-way interaction in virtual spaces. However, many

instances of such interaction are currently limited to

specialized uses or more expensive devices such as the

Kinect and the Oculus Rift. In this paper we explore the

methods for hand gesture recognition using a more

common device – the laptop web-camera. Specifically, we

explore and test 3 different methods of segmenting the

hand, and document the pros and cons of each method.

We will also cover one method for hand gesture

recognition.

1. Introduction

Computer technology has come a long way in the past

two decades. The things that can be done, and the time

spent on electronic devices has increased tremendously as

well. They have infiltrated every aspect of our lives; from

how we learn, to how we share experiences with others.

Although the devices have been advancing quickly, the

methods of interacting with these devices have been

largely neglected – until now. With so many aspects of our

lives being affected by computers, people began to wonder

if there was a better, more natural way to interact with

devices, other than using the traditional keyboard and

mouse. This led to the emergence of a new field: Human-

Computer Interaction (HCI). The impact of HCI can be

seen in the first iPhone, which revolutionized the mobile

device industry with its intuitive touch screen. A more

recent example of such a revolution is voice commands,

through products like Google Now and Apple’s Siri, which

allowed for hands-free controls. It can be said that both of

these methods of interaction succeeded because they were

so natural, so familiar to us – it was far more natural to

point and tap on an icon using our finger, than to shift a

mouse to move a cursor to click on an icon.

As the industry places its focus on Virtual and

Augmented Reality, the importance of HCI will grow even

more. People will desire a level of interaction that befits

the term “virtual reality” – it has to mimic reality, where

we use our limbs, five senses and voice to interact with the

world around us. Hence, starting with the most basic

interaction, we would want to use our hands to move and

‘touch’ things. In other words, we need hand gesture

recognition as the basis of HCI in virtual reality.

This paper aims to explore the existing options for hand

gesture recognition in a common context. Most people

nowadays own a laptop with a front-facing camera. If we

could tap into this, we could possibly bring a more natural

method of interaction to the masses. Moreover, as virtual

reality devices become more common, the laptop camera

may also become a viable complementary interaction

device, capturing a field of view separate from the virtual

reality device.

Section 2 explores past attempts at hand gesture

recognition and Sections 3 to 5 explore the different

methods tested.

2. Related Work

Several papers and projects have targeted the issue of

hand gesture recognition. Francis et al[1] compared

methods for gesture recognition in cars, evaluating

accelerometers-based, glove-based, and Kinect-based

approaches. Mitra et al[2] analyzed more computationally

heavy methods using hidden Markov models and finite

state machines. Ghotkar et al[3] presented a novel

approach to hand segmentation and gesture recognition

using different color spaces.

The methods proposed by Francis et al required

additional hardware, while those proposed by Mitra et al

were computationally heavy, requiring classification and

processing time. Our goal was hence to follow the example

of Ghotkar et al, and explore the more basic methods of

hand segmentation and gesture recognition available,

applying them to execute simple controls on a laptop.

Hand Recognition and Gesture Control Using a Laptop Web-camera

Zi Xian Justin Yeo

Exchange Student with

Stanford University

450 Serra Mall, Stanford, CA 94305
yeozx@u.nus.edu

2

3. Technical Overview

This section highlights the key components that make up

a gesture recognition system.

Figure 1: System flow chart.

A simplistic overview of a gesture recognition system is

given above. Depending on the method of detection used,

there may be a need for an additional calibration step

immediately after start-up.

As can be seen from the flow chart, until a hand is

detected, the system will constantly be scanning and

segmenting, attempting to identify the presence of a hand.

The focus of this paper is on this stage; how to clearly

identify a hand given a non-simple background, simulating

the situations of the everyday laptop user. These methods

are

Once a hand is detected, it moves on to gesture

recognition. The system tracks the position and state of the

hand, and based on how the user moves, determines the

command to execute. Following command execution, the

system will wait for the next gesture. At any point of this

stage, the user can choose to exit gesture control by hiding

their hand – the moment the system can longer track or

detect the hand, it will return to standby, waiting for the

next user input.

4. Hand Segmentation Methods

The basis for recognizing hand gestures is recognizing if

there is a hand in the image. Hence, this paper will place

substantial emphasis on the methods of segmenting the

hand from the background of the camera (or video) input.

The methods below were chosen with two criteria in

mind. First, simplicity. From past works, it could be seen

that complex algorithms, while more robust, were

significantly slower and required a more complicated set-

up, such as calibration and classifier training when starting

the system in a new environment. The second criterion is

flexibility. Our use case involves the average laptop user –

who may be sitting in any environment and with a

background that may be complex. It is hence desirable to

have a segmentation method that would accommodate for

varying non-simple backgrounds, despite only using a

single RGB camera.

4.1. Canny Edge detection

This method was the first to be tested. Intuitively,

human skin color, especially on the surface of the palm,

tended to be different from most surfaces one would find

in a background. This allowed for color contrasts between

the hand and the background, which could be interpreted

as edges.

Canny edge detection is done using OpenCV, with the

samples1 as reference.

Figure 2: Canny edge gets most of the outline.

As can be seen in the above image, canny edge

detection easily forms the outline of the hand. However,

there are limitations to the canny edge method.

First, it is prone to noise. It will be difficult to

accurately extract the edge contours of the hand from the

background, especially if the background has many edges

as well. One method to do this would involve some form

of shape matching, possibly using a sliding window.

However, this is likely to be less rotation- and size-

invariant.

A second drawback of the edge detection method is the

susceptibility to poor lighting conditions. In the image, it

can be seen that some edges are missing, especially since

both foreground and background are equally dark due to

the lack of lighting.

4.2. Background Subtraction

Background Subtraction involves having the program

read multiple frames and subtracting the aggregate values

from future frames. In theory this would work in any

1 See https://github.com/Itseez/opencv/tree/master/samples/python

3

environment as the program would ‘calibrate’ itself on

start-up. As long as the user is the only moving object in

the room, we would be able to detect their hand. There is

the possibility of detecting other body parts if the user is

far from the camera, but we will leave addressing this issue

to a later project.

As an initial investigation, the methods of background

subtraction used were the few built-in OpenCV functions

such as BackgroundSubtractMOG. It was found that these

methods worked fairly well without much customization.

Figure 3: Background subtraction can work well

As can be seen in the above image, background

subtraction has the potential to work very well. That said,

it is also not an infallible method.

Figure 4: Background subtraction is also susceptible to dark

areas and poor lighting

First, background subtraction needs a short calibration

period. In this time, the user should not be in the camera

view, lest he be read as part of the background. This is a

minor issue and can be resolved with careful use.

Second, background subtraction is also susceptible to

poor lighting conditions, and is especially bad with dark

areas as well, because the lack of light will lead to both

foreground and background being similarly dark colors.

Given that edge detection also faces this issue, it can be

said that dark environments are a key obstacle in using

color space to segment the hand. One way of addressing

‘dark’ areas is to reduce the threshold; but this could

introduce noise, and the right threshold may differ with the

environment, making this a difficult balance to strike.

4.3. Calibration and Thresholding

The third and last method attempted was calibration and

thresholding. This method was inspired by a previous work

by Simon Andresen2. This method involves having the

user place his hand in front of the camera in a way that

covers the calibration boxes displayed by the program (see

below). The program then gets the mean color values of

each box, and saves these for future comparisons. When

attempting to segment the hand, we can identify areas that

differ from each of these color values by a given threshold.

By compiling the segmentation given by each box’s color

value, we should be able to obtain a more complete

segmentation of the hand; one that accounts for the

variations in color across different regions of the hand.

Figure 5: RGB thresholding has both false positives and

negatives.

The first attempt at this method was using RGB

threshold values and OpenCV’s inRange() function. This

method did not work out well, with many areas of the

image being segmented wrongly or poorly.

Figure 6: HSV performs better than RGB

The second attempt at this method converted the RGB

values to HSV, and applied the thresholds more tightly on

the Hue values. The reasoning for this was that the main

differentiating factor of the hand was its hue, and the

variance in how a hand appears in different environments

could be attributed to saturation and value. After some

trial-and-error with the threshold values, the result above

was obtained.

Although the calibration and thresholding method has

the potential to be fairly accurate in segmenting the hand,

it turned out to be very sensitive to the environment. In our

testing, the threshold values that were required to segment

the hand properly varied vastly between environments.

There was an environment in which green was mistakenly

2 See http://simena86.github.io/blog/2013/08/12/hand-tracking-and-

recognition-with-opencv/

4

segmented as part of the hand, and another where parts of

the hand were not segmented because of shadowing.

4.4. Method Chosen

From the above investigations, it can be seen that all

three methods were susceptible to environmental changes,

especially where lighting was involved. This could be

viewed as the drawback of using a single RGB camera,

which only provides us with the means to differentiate

using color. Even if calibration was used to adjust the

thresholds somehow, it is worth noting that lighting can

differ even within an environment – a hand beside the

window would have a different RGB or HSV from a hand

in a darker corner of the same room.

Of the three methods, it was determined that

background subtraction is the most robust and simplest to

implement. The fact that it did not rely on the exact color

of the hand meant it was less susceptible to variations in

lighting within the environment. It also returned the

segmentation in a binary image, which made the gesture

recognition steps much simpler. The primary weakness of

this method was dealing with dark areas (i.e. the need to

light up the hand), which would be the main constraint

moving forward.

5. Gesture Recognition

As mentioned earlier, gesture recognition can only come

after segmentation is done. Due to the segmentation

methods not yielding desired results, this section is not the

core focus of this paper.

We will explore one method of identifying simple hand

gestures, and implement 2 basic gesture controls: cursor

movement and mouse click.

5.1. Convex Hull Method

This method was inspired by an online tutorial by

ifheqhar3.

The convex hull method takes the outline of a shape,

and identifies the convex and concave (defect) points

along the outline. These points provide us with a rough

idea of the shape of the object. In the case of a hand, it

should have 5 convex points (one for each finger) and 4

defects (one between two adjacent fingers).

Using this method, we can identify the number of

fingers the user is showing to us by the number of convex

and defect points. For example, if there are 2 convex and 2

defect points, it is likely that the user is showing us 2

fingers.

In our implementation, we used OpenCV functions such

as findContours(), convexHull() and convexityDefects() to

3 See http://creat-tabu.blogspot.ro/2013/08/opencv-python-hand-

gesture-recognition.html

obtain the convex hull and defect points. Below is a

sample output of the centroid and number of defects for a

given detection.

Figure 7: Example of console output. Numbers in brackets are

(x, y) coordinates. Number on the right is the number of defects.

Two issues can be seen in this implementation. The first

is that the number of defects is higher than expected, and is

likely to be due the shape of the hand not being smooth.

The presence of noise in the hand’s contour led to

additional defects. The second issue is that the centroid of

the shape is affected by all segmented areas, hand or not.

In other words, if the arm is part of the image, it could

affect the rate of change of the centroid’s location relative

to the amount the hand is actually moving. This would

impact gesture controls that rely on the hand’s position.

5.2. Gesture Controls

The basic gesture controls were implemented using the

centroid of the detected hull, and the number of defect

points.

The program tracks the centroid from the moment a

hand is detected, and then shifts the cursor based on the

movement of the hand. As the centroid moves, the cursor

is moved the same number of pixels.

Similarly, for the mouse click, the system tracks and

stores the number of defect points, compares it with the

next number detected. Due to the instability of the defect

point detection, the mouse click is set to trigger whenever

the number of defects falls below a given threshold –

instead of when a given number of fingers are shown.

6. Conclusion

While the system implemented has much room for

improvement, it can be said that the investigative process

was a success. This paper shows the pros and cons of the

simpler methods of hand segmentation and recognition,

and the limitations of working with a single-view camera,

with a key issue being dealing with lighting.

5

References

[1] J. Francis and A. B K, "Significance of Hand Gesture

Recognition Systems in Vehicular Automation-A Survey",

International Journal of Computer Applications, vol. 99, no.

7, pp. 50-55, 2014.

[2] S. Mitra and T. Acharya, "Gesture Recognition: A Survey",

IEEE Trans. Syst., Man, Cybern. C, vol. 37, no. 3, pp. 311-

324, 2007.

[3] A. S.Ghotkar and G. K. Kharate, " Hand Segmentation

Techniques to Hand Gesture Recognition for Natural

Human Computer Interaction", International Journal of

Human Computer Interaction, vol. 3, no. 1, pp. 15-25,

2012.

