# Lecture 8 Active stereo & Volumetric stereo



- Active stereo
  - Structured lighting
  - Depth sensing
- Volumetric stereo:
  - Space carving
  - Shadow carving
  - Voxel coloring

#### **Reading:**

[Szelisky] Chapter 11 "Multi-view stereo"

S. Savarese, M. Andreetto, H. Rushmeier, F. Bernardini and P. Perona, 3D Reconstruction by Shadow Carving: Theory and Practical Evaluation, International Journal of Computer Vision (IJCV), 71(3), 305-336, 2006

Seitz, S. M., & Dyer, C. R. (1999). Photorealistic scene reconstruction by voxel coloring. *International Journal of Computer Vision*, *35*(2), 151-173.

#### Silvio Savarese & Jeanette Bohg

Lecture 7 -



## **Traditional stereo**



What's the main problem in traditional stereo? We need to find correspondences!



#### Replace one of the two cameras by a projector

- Projector geometry calibrated
- What's the advantage of having the projector? Correspondence problem solved! Any limitation??



- Projector and camera are parallel
- Correspondence problem is solved!



Camera

- Use calibration rig to calibrate camera and localize rig in 3D
- Project patterns on rig and calibrate projector

### Laser scanning



Digital Michelangelo Project (1990) http://graphics.stanford.edu/projects/mich/

#### • Optical triangulation

- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

### Laser scanning



The Digital Michelangelo Project, Levoy et al.

## Limitations of Laser scanning



- Slow
- Cannot capture deformations in time

### Active stereo (color-coded stripes)

L. Zhang, B. Curless, and S. M. Seitz 2002 S. Rusinkiewicz & Levoy 2002

projector LCD or DLP displays

- Dense reconstruction
- Correspondence problem again
- Get around it by using color codes

### Active stereo (color-coded stripes)





#### Rapid shape acquisition: Projector + stereo cameras



L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multipass Dynamic Programming. 3DPVT 2002

### Active stereo - depth sensors



- Infrared projector combined with an IR camera
- Captures video data in 3D under any ambient light conditions.



Pattern of projected infrared points to generate a dense 3D image



Depth map

# Lecture 8 Active stereo & Volumetric stereo

- Active stereo
  - Structured lighting
  - Depth sensing
- Volumetric stereo:
  - Space carving
  - Shadow carving
  - Voxel coloring



Silvio Savarese & Jeanette Bohg

Lecture 7 -





Goal: estimate the position of P given the observation of P from two view points

Assumptions: known camera parameters and position (K, R, T)



Subgoals: 1. Solve the correspondence problem 2. Use corresponding observations to tria

2. Use corresponding observations to triangulate

## Volumetric stereo



Hypothesis: pick up a point within the volume
Project this point into 2 (or more) images
Validation: are the observations consistent?

Assumptions: known camera parameters and position (K, R, T)

### Consistency based on cues such as:

- Contours/silhouettes
- Shadows
- Colors

- $\rightarrow$  Space carving
- $\rightarrow$  Shadow carving
- $\rightarrow$  Voxel coloring

# Lecture 8 Active stereo & Volumetric stereo



Active stereo
Structured lighting
Depth sensing

#### • Volumetric stereo:

- Space carving
- Shadow carving
- Voxel coloring

Reading:

[Szelisky] Chapter 11 "Multi-view stereo"

Silvio Savarese & Jeanette Bohg

Lecture 7 -

24-Apr-24

### Contours/silhouettes

• Contours are a rich source of geometric information



#### **Apparent Contours**

 Projection of the locus of points on the object surface which separate the visible and occluded parts on the surface [sato & cipolla]



#### Silhouettes

A silhouette is defined as the area enclosed by the apparent contours



#### Detecting silhouettes



#### Detecting silhouettes

Original Image



Silhouette



#### How can we use contours?



#### How can we use contours?



#### How can we use contours?



### How to perform visual cones intersection?

• Decompose visual cone in polygonal surfaces (among others: Reed and Allen '99)



#### Space carving

[Martin and Aggarwal (1983)]

• Using contours/silhouettes in volumetric stereo, also called space carving











#### Space carving has complexity ...





• Subdiving volume in sub-volumes of progressive smaller size














#### Advantages of Space carving

- Robust and simple
- No need to solve for correspondences

#### Limitations of Space carving

 Accuracy function of number of views





#### Limitations of Space carving



#### Limitations of Space carving



#### Space carving: A Classic Setup



#### Space carving: A Classic Setup





#### Space carving: Experiments



24 poses (15<sup>o</sup>) voxel size = 1mm



#### Space carving: Experiments



24 poses (15<sup>o</sup>)

voxel size = 2mm



#### Space carving: Conclusions

- Robust
- Produce conservative estimates
- Concavities can be a problem
- Low-end commercial 3D scanners





# Lecture 8 Active stereo & Volumetric stereo



- Active stereo
  Structured lighting
  Depth sensing
- Volumetric stereo:
  - Space carving
  - Shadow carving
  - Voxel coloring

Silvio Savarese & Jeanette Bohg

Lecture 7 -



#### Shape from Shadows

• Self-shadows are visual cues for shape recovery



#### Shadow carving: The Setup



#### Shadow carving: The Setup



#### Shadow carving: The Setup

[Savarese et al '01]



#### Shadow carving

[Savarese et al. 2001]



Self-shadows







Object's upper bound



Image









#### Simulating the System



- 24 positions
- 4 lights

- 72 positions
- 8 lights

#### Results



#### Space carving

Shadow carving

16 positions 4 lights

#### Results



Space carving



Shadow carving

#### Shadow carving: Summary

- Produces a conservative volume estimate
- Accuracy depending on view point and light source number
- Limitations with reflective & low albedo regions

# Lecture 8 Active stereo & Volumetric stereo



- Active stereo
  Structured lighting
  Depth sensing
- Volumetric stereo:
  - Space carving
  - Shadow carving
  - Voxel coloring

Silvio Savarese & Jeanette Bohg

Lecture 7 -



# **Voxel Coloring**

[Seitz & Dyer ('97)] [R. Collins (Space Sweep, '96)]



- Color/photo-consistency
- Jointly model structure and appearance





## Uniqueness



### Uniqueness



• Multiple consistent scenes

How to fix this? Need to use a visibility constraint

# Algorithm for enforcing visibility constraints



## **Algorithm Complexity**

- Voxel coloring visits each N<sup>3</sup> voxels only once
- Project each voxel into L images

 $\rightarrow$  O(L N<sup>3</sup>)

NOTE: not function of the number of colors

#### A Critical Assumption: Lambertian Surfaces


#### Non Lambertian Surfaces



# **Photoconsistency Test**



If C >  $\lambda$ = threshold  $\rightarrow$  voxel consistent

## **Experimental Results**







#### Dinosaur

72 k voxels colored7.6 M voxels tested7 min to compute on a 250MHz

Image source: http://www.cs.cmu.edu/~seitz/vcolor.html

## **Experimental Results**







#### Flower

70 k voxels colored7.6 M voxels tested7 min to compute on a 250MHz

Image source: http://www.cs.cmu.edu/~seitz/vcolor.html

## **Experimental Results**



Room + weird people



Image source: http://www.cs.cmu.edu/~seitz/vcolor.html

# **Voxel Coloring: Conclusions**

- Good things
  - Model intrinsic scene colors and texture
  - No assumptions on scene topology
- Limitations:
  - Constrained camera positions
  - Lambertian assumption

#### **Further Contributions**

• A Theory of Space carving

[Kutulakos & Seitz '99]

- Voxel coloring in more general framework
- No restrictions on camera position
- Probabilistic Space carving

[Broadhurst & Cipolla, ICCV 2001] [Bhotika, Kutulakos et. al, ECCV 2002]

- CNN & voxel coloring
  - Incorporate reprojection error in the loss function for estimating object shape

# Next lecture...

# Fitting and Matching