# Lecture 7 Multi-view geometry



- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications

#### Reading:

[HZ] Chapter 10 "3D reconstruction of cameras and structure"

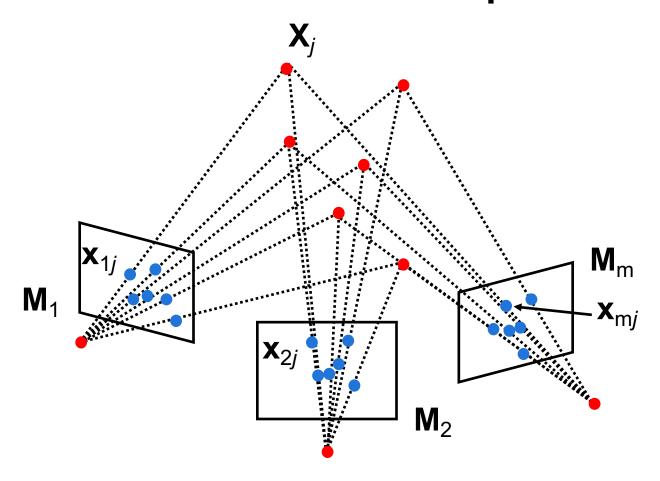
Chapter 18 "N-view computational methods"

Chapter 19 "Auto-calibration"

[FP] Chapter 13 "projective structure from motion"

[Szelisky] Chapter 7 "Structure from motion"

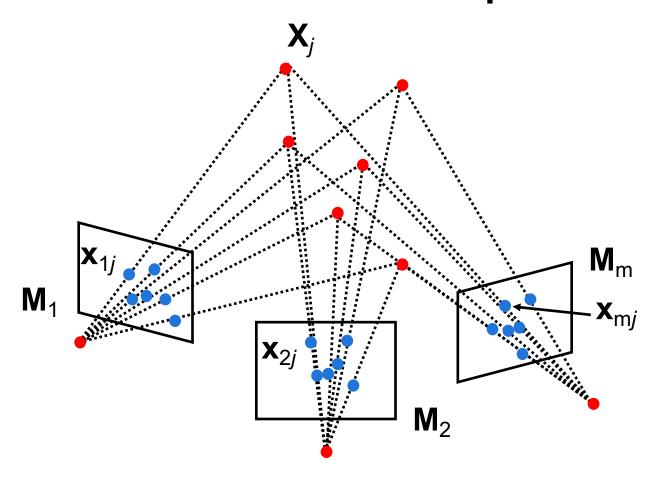
### Structure from motion problem



Given m images of n fixed 3D points

$$\bullet \mathbf{x}_{ij} = \mathbf{M}_i \mathbf{X}_j$$
,  $i = 1, \dots, m, j = 1, \dots, n$ 

### Structure from motion problem

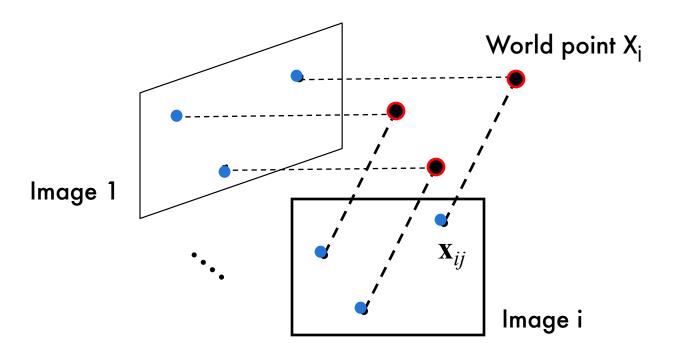


From the  $m \times n$  observations  $x_{ij}$ , estimate:

- ullet m projection matrices  $\mathbf{M}_i$
- n 3D points  $X_i$

motion structure

## Affine structure from motion (simpler problem)



From the  $m \times n$  observations  $x_{ij}$ , estimate:

- m projection matrices  $M_i$  (affine cameras)
- n 3D points  $X_i$

Perspective
$$\mathbf{X} = M \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \mathbf{X} \\ \mathbf{m}_2 \mathbf{X} \\ \mathbf{m}_3 \mathbf{X} \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{v} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix}$$

$$\mathbf{x}^E = \left(\frac{\mathbf{m}_1 \mathbf{X}}{\mathbf{m}_3 \mathbf{X}}, \frac{\mathbf{m}_2 \mathbf{X}}{\mathbf{m}_3 \mathbf{X}}\right)^T$$

#### **Affine**

$$\mathbf{X} = M \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m} \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \mathbf{X} \\ \mathbf{m}_2 \mathbf{X} \\ 1 \end{bmatrix}$$

Fine 
$$\mathbf{X} = M \ \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \mathbf{X} \\ \mathbf{m}_2 \mathbf{X} \\ 1 \end{bmatrix} \qquad M = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{2x3} & \mathbf{b}_{2x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$

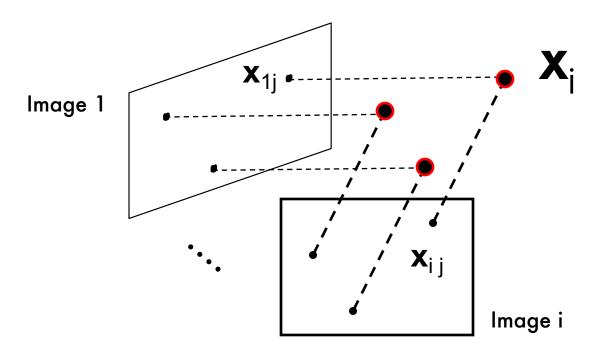
$$\mathbf{X}^{E} = (\mathbf{m}_{1} \mathbf{X}, \mathbf{m}_{2} \mathbf{X})^{T} = \begin{bmatrix} \mathbf{A}_{2x3} \mathbf{b}_{2x1} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{A} \mathbf{X}^{E} + \mathbf{b}$$
magnification
$$\begin{bmatrix} \mathbf{Eq. 3} \end{bmatrix}$$

$$\mathbf{X}^{E} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\sum_{2\times 3} \mathbf{b}_{2\times 1} \mathbf{X} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$$

$$\mathbf{X}^E = \left[ \begin{array}{c} x \\ y \\ z \end{array} \right]$$

#### Affine cameras



For the affine case (in Euclidean space)

$$X_{ij} = A_i X_j + b_i$$
 [Eq. 4]  
 $2x1$   $2x3$   $3x1$   $2x1$ 

Given m images of n fixed points  $X_i$  we can write

$$\mathbf{X}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i$$
 for  $i = 1, ..., m$  and  $j = 1, ..., n$   
N. of cameras N. of points

Problem: estimate m matrices  $A_i$ , m matrices  $b_i$  and the n positions  $\mathbf{X}_i$  from the m×n observations  $\mathbf{X}_{ii}$ .

How many equations and how many unknown?

2m × n equations in 8m + 3n - 8 unknowns

#### Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)

- Factorization method

#### Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)

- Factorization method

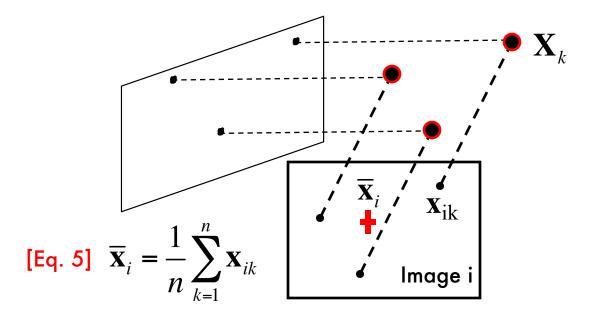
## A factorization method – Tomasi & Kanade algorithm

C. Tomasi and T. Kanade<u>Shape and motion from image streams under orthography: A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

- Data centering
- Factorization

Centering: subtract the centroid of the image points

[Eq. 6] 
$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik}$$



Centering: subtract the centroid of the image points

[Eq. 6] 
$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} = \mathbf{A}_{i} \mathbf{X}_{j} + \mathbf{b}_{i} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{A}_{i} \mathbf{X}_{k} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{b}_{i}$$

$$\mathbf{X}_{ik} = \mathbf{A}_i \mathbf{X}_k + \mathbf{b}_i$$
[Eq. 4]
$$\mathbf{X}_k$$

$$\mathbf{X}_i = \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{ik}$$

Centering: subtract the centroid of the image points

[Eq. 6] 
$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} = \mathbf{A}_{i} \mathbf{X}_{j} + \mathbf{b}_{i} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{A}_{i} \mathbf{X}_{k} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{b}_{i}$$

$$= \mathbf{A}_{i} \left( \mathbf{X}_{j} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \right) = \mathbf{A}_{i} \left( \mathbf{X}_{j} - \overline{\mathbf{X}} \right)$$

$$= \mathbf{A}_{i} \hat{\mathbf{X}}_{j} \quad [\text{Eq. 8}]$$

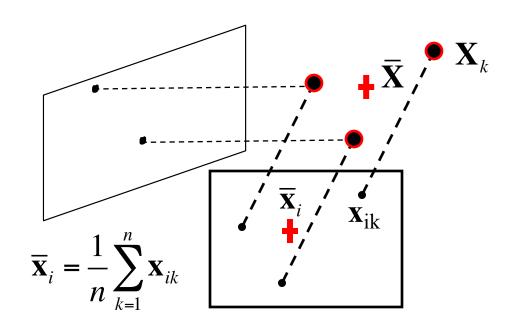
$$= \mathbf{X}_{i} \hat{\mathbf{X}}_{j} \quad [\text{Eq. 8}]$$

$$= \mathbf{X}_{i} \hat{\mathbf{X}}_{j} \quad [\text{Eq. 7}]$$

Centroid of 3D points

Thus, after centering, each **normalize**d observed point is related to the 3D point by

$$\hat{\mathbf{X}}_{ij} = \mathbf{A}_i \hat{\mathbf{X}}_j$$
 [Eq. 8]

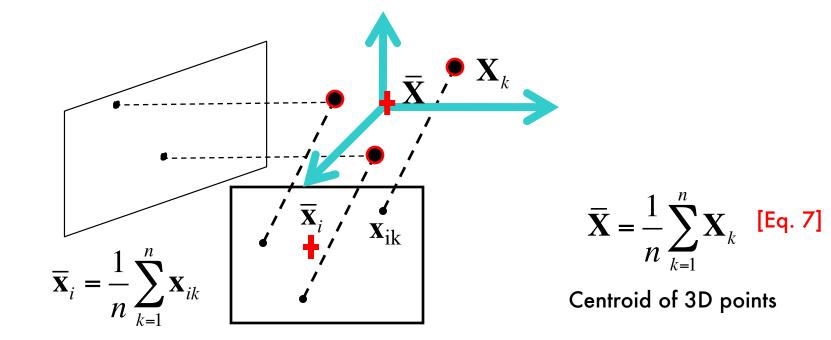


$$\overline{\mathbf{X}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \quad [Eq. 7]$$

Centroid of 3D points

If the centroid of points in 3D = center of the world reference system

$$\hat{\mathbf{X}}_{ij} = \mathbf{A}_i \hat{\mathbf{X}}_j = \mathbf{A}_i \mathbf{X}_j$$
 [Eq. 9]



#### A factorization method - factorization

Let's create a 2m × n data (measurement) matrix:

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{X}}_{11} & \hat{\mathbf{X}}_{12} & \cdots & \hat{\mathbf{X}}_{1n} \\ \hat{\mathbf{X}}_{21} & \hat{\mathbf{X}}_{22} & \cdots & \hat{\mathbf{X}}_{2n} \\ & \ddots & & \\ \hat{\mathbf{X}}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix} \quad \text{cameras}$$

$$\hat{\mathbf{X}}_{m1} \quad \hat{\mathbf{X}}_{m2} \quad \cdots \quad \hat{\mathbf{X}}_{mn}$$
points (n)

Each  $\hat{\mathbf{X}}_{ij}$  entry is a  $2 \times 1$  vector!

#### A factorization method - factorization

Let's create a 2m × n data (measurement) matrix:

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ \vdots & \vdots & \vdots \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\mathbf{Cameras}$$

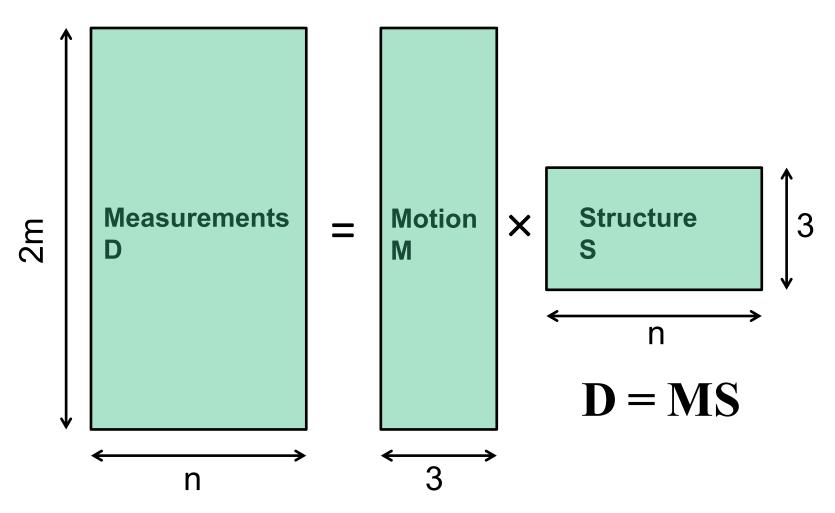
$$(2 \, \mathbf{m} \times \mathbf{n})$$

$$\mathbf{S}$$

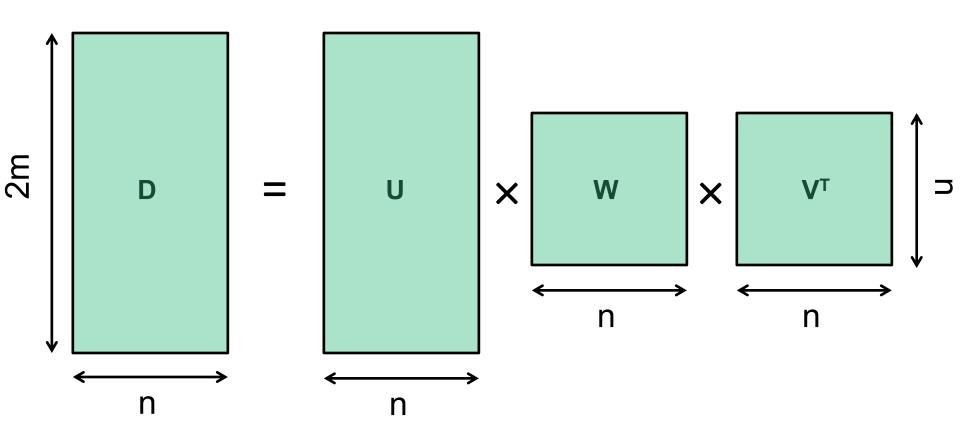
Each  $\hat{\mathbf{X}}_{ij}$  entry is a 2x1 vector!  $\mathbf{A}_{i}$  is 2x3 and  $\mathbf{X}_{i}$  is 3x1

The measurement matrix D = M S has rank 3 (it's a product of a 2mx3 matrix and 3xn matrix)

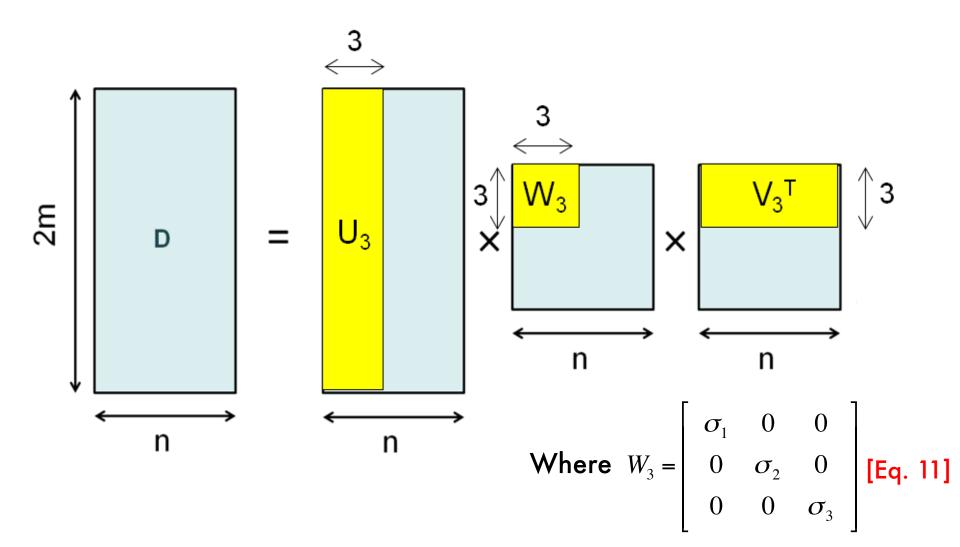
How to factorize D?

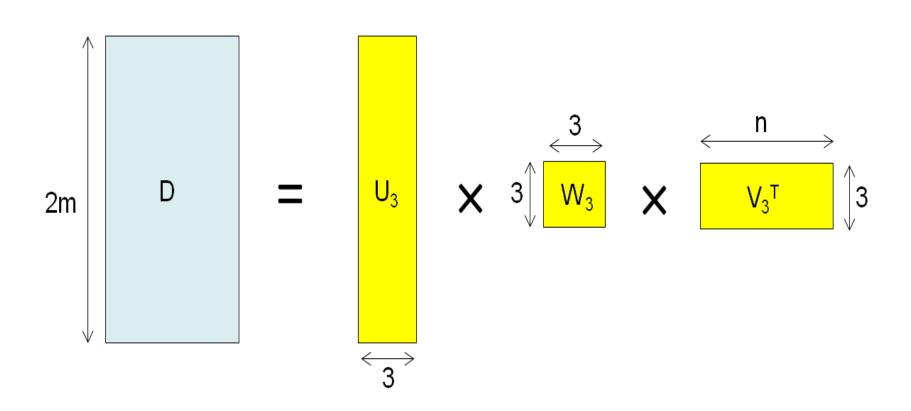


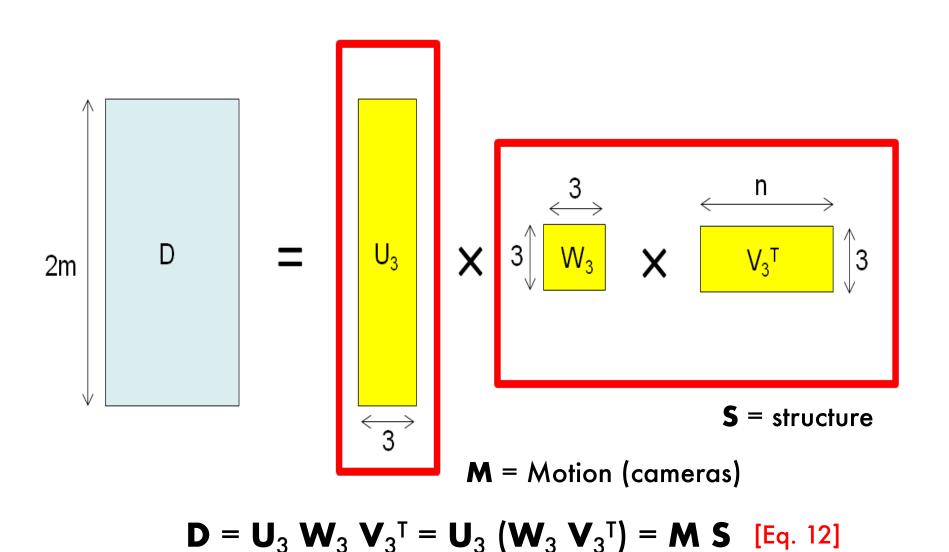
• By computing the Singular value decomposition of D!



Since rank (D)=3, there are only 3 non-zero singular values  $\sigma_1$ ,  $\sigma_2$  and  $\sigma_3$ 







$$D = U_3 W_3 V_3^T = U_3 (W_3 V_3^T) = M S [Eq. 12]$$

What is the issue here? **D** has rank>3 because of:

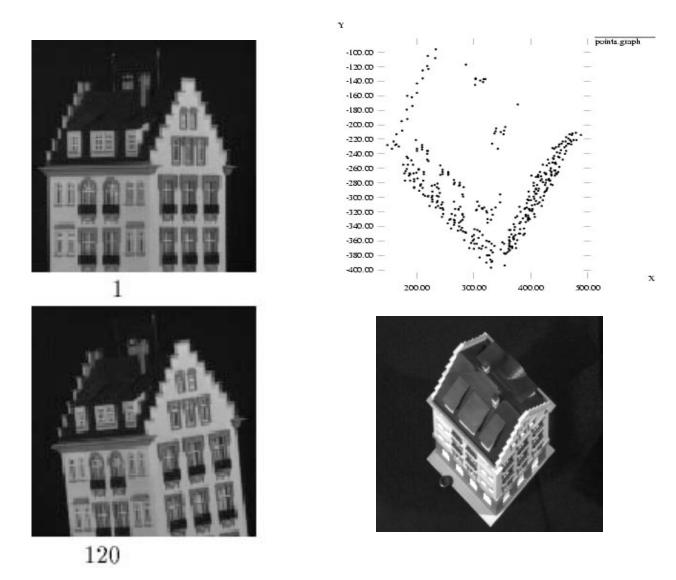
- measurement noise
- affine approximation

**Theorem:** When **D** has a rank greater than 3,  $\mathbf{U}_3\mathbf{W}_3\mathbf{V}_3^T$  is the best possible rank- 3 approximation of **D** in the sense of the Frobenius norm.

$$\mathbf{D} = \mathbf{U}_3 \mathbf{W}_3 \mathbf{V}_3^T \qquad \begin{cases} \mathbf{M} \approx \mathbf{U}_3 \\ \mathbf{S} \approx \mathbf{W}_3 \mathbf{V}_3^T \end{cases}$$

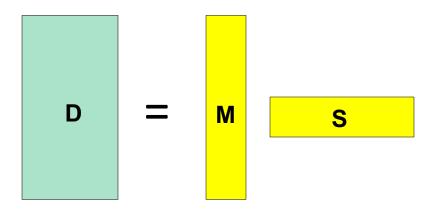
$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\sum_{i=1}^{\min\{m, n\}} \sigma_i^2}$$

#### Reconstruction results

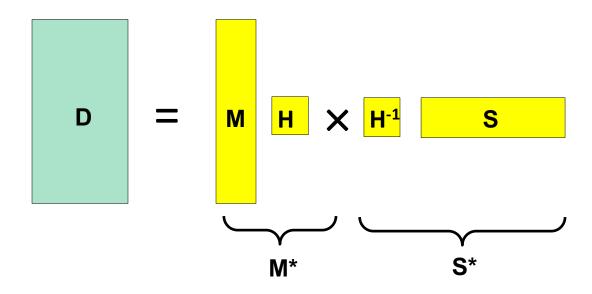


C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography:</u> <u>A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

### **Affine Ambiguity**



#### **Affine Ambiguity**



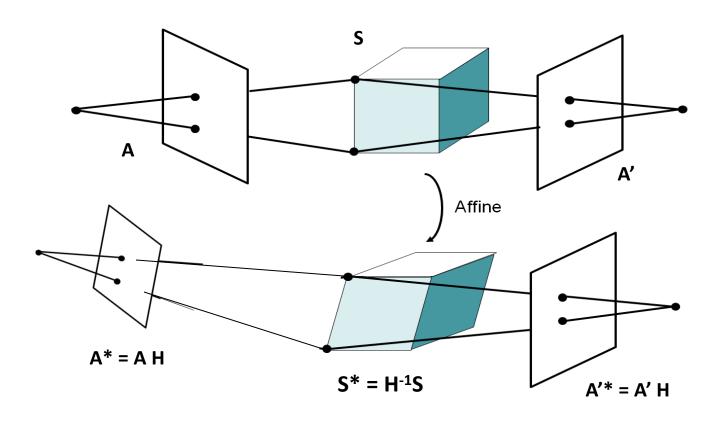
 The decomposition is not unique. We get the same **D** by applying the transformations:

$$M^* = M H$$
  
 $S^* = H^{-1}S$ 

where **H** is an arbitrary 3x3 matrix describing an affine transformation

Additional constraints must be enforced to resolve this ambiguity

### **Affine Ambiguity**



Given m images of n fixed points  $X_i$  we can write

$$\mathbf{X}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i$$
 for  $i = 1, ..., m$  and  $j = 1, ..., n$   
N. of cameras N. of points

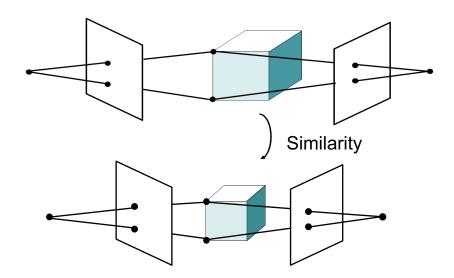
Problem: estimate m matrices  $A_i$ , m matrices  $b_i$  and the n positions  $\boldsymbol{X}_i$  from the m×n observations  $\boldsymbol{x}_{ij}$ .

How many equations and how many unknown?

2m × n equations in 8m + 3n - 8 unknowns

#### Similarity Ambiguity

- The scene is determined by the images only up a similarity transformation (rotation, translation and scaling)
- This is called metric reconstruction



- The ambiguity exists even for (intrinsically) calibrated cameras
- For calibrated cameras, the similarity ambiguity is the only ambiguity

#### Similarity Ambiguity

 It is impossible, based on the images alone, to estimate the absolute scale of the scene

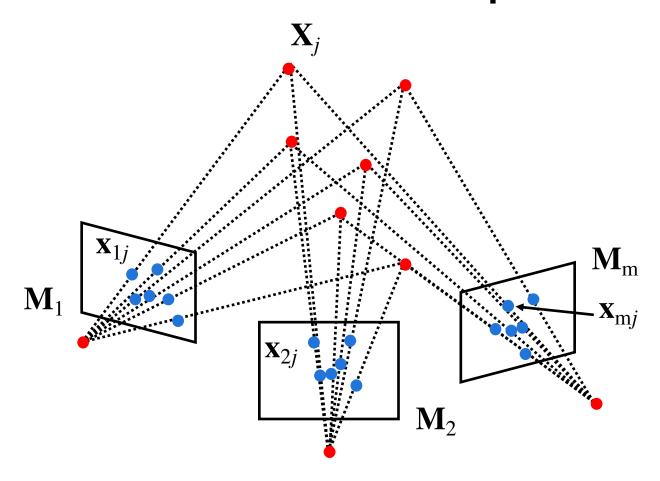


# Lecture 7 Multi-view geometry



- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications

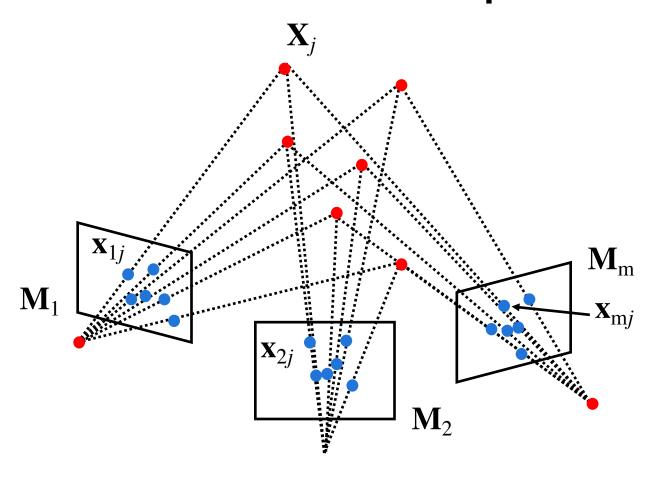
### Structure from motion problem



From the  $m \times n$  observations  $x_{ij}$ , estimate:

- m projection matrices  $M_i = motion$
- n 3D points  $X_i = \text{structure}$

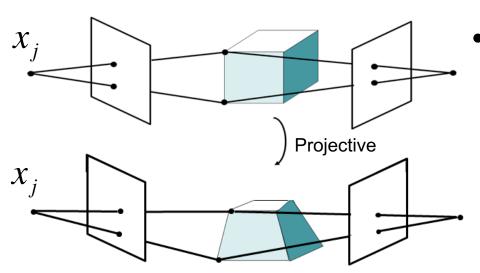
#### Structure from motion problem



m cameras M<sub>1</sub>... M<sub>m</sub>

$$\mathbf{M}_{i} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \mathbf{b}_{1} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} & \mathbf{b}_{2} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} & 1 \end{bmatrix}$$

#### Structure from Motion Ambiguities



 In the general case (nothing is known) the ambiguity is expressed by an arbitrary 4X4 projective transformation

$$X_{j} = M_{i} X_{j}$$

$$M_{i} = K_{i} [R_{i} T_{i}]$$

$$H X_{j}$$

$$M_{j} H^{-1}$$

$$X_{j} = M_{i} X_{j} = (M_{i} H^{-1})(H X_{j})$$

Given m images of n fixed points  $X_j$  we can write

$$X_{ij} = M_i X_j$$
 for i = 1, ..., m and j = 1, ..., n N. of cameras N. of points

Problem: estimate m  $3\times4$  matrices  $M_i$  and n positions  $X_i$  from m×n obvestvations  $x_{ii}$ .

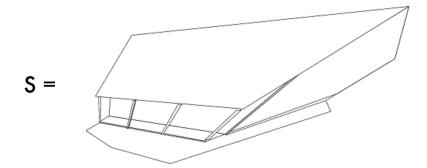
- If the cameras are not calibrated, cameras and points can only be recovered up to a 4x4 projective (where the 4x4 projective is defined up to scale)
- How many equations and how many unknown?

2m × n equations in 11m+3n - 15 unknowns

#### **Projective Ambiguity**

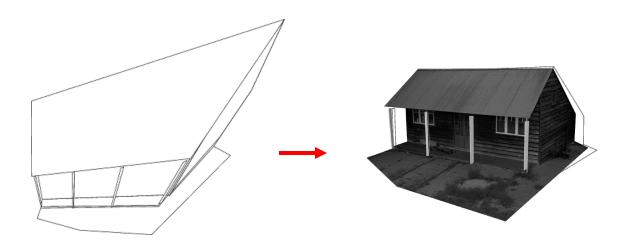






#### Metric reconstruction (upgrade)

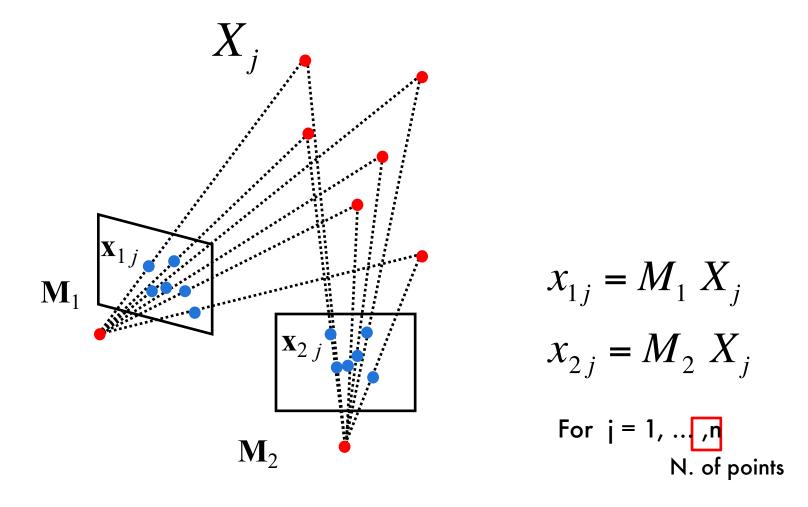
 The problem of recovering the metric reconstruction from the perspective one is called self-calibration



#### Structure-from-Motion methods

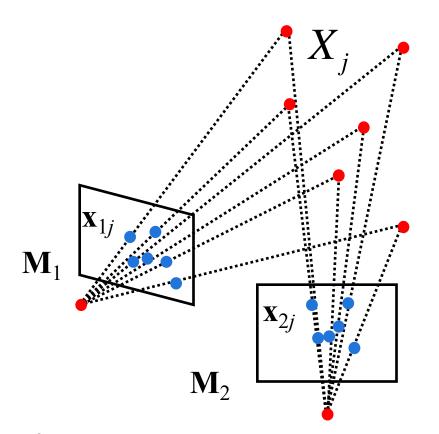
- 1. Recovering structure and motion up to perspective ambiguity
  - Algebraic approach (by fundamental matrix)
  - Factorization method (by SVD)
  - Bundle adjustment
- 2. Resolving the perspective ambiguity

- 1. Compute the fundamental matrix F from two views
- 2. Use F to estimate projective cameras
- 3. Use these cameras to triangulate and estimate points in 3D



From at least 8 point correspondences, compute F associated to camera 1 and 2

- 1. Compute the fundamental matrix F from two views (eg. 8 point algorithm)
- 2. Use F to estimate projective cameras
- 3. Use these cameras to triangulate and estimate points in 3D



$$x_{1j} = M_1 X_j$$

$$x_{2j} = M_2 X_j$$
For  $j = 1, ..., n$ 
N. of points

Because of the projective ambiguity, we can always apply a projective transformation H such that:

$$M_1 H^{-1} = \begin{bmatrix} I & 0 \end{bmatrix} \qquad M_2 H^{-1} = \begin{bmatrix} A & b \end{bmatrix}$$
 [Eq. 3] Canonical perspective camera [Eq. 4]

- Call X a generic 3D point X<sub>ii</sub>
- Call x and x' the corresponding observations to camera 1 and respectively

$$\tilde{\mathbf{X}} = M_{1} \mathbf{H}^{-1} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \qquad \mathbf{X} = M_{1} \mathbf{X} = M_{1} \mathbf{H}^{-1} \mathbf{H} \mathbf{X} = [\mathbf{I} \mid \mathbf{0}] \tilde{\mathbf{X}} \quad [\mathbf{Eq. 6}]$$

$$\tilde{\mathbf{M}}_{2} = M_{2} \mathbf{H}^{-1} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} \qquad \mathbf{X}' = M_{2} \mathbf{X} = M_{2} \mathbf{H}^{-1} \mathbf{H} \mathbf{X} = [\mathbf{A} \mid \mathbf{b}] \tilde{\mathbf{X}}$$

$$\tilde{\mathbf{X}} = \mathbf{H} \mathbf{X}$$

$$\mathbf{X}' = [\mathbf{A} \mid \mathbf{b}] \tilde{\mathbf{X}} = [\mathbf{A} \mid \mathbf{b}] \begin{bmatrix} \tilde{X}_{1} \\ \tilde{X}_{2} \\ \tilde{X}_{3} \\ 1 \end{bmatrix} = \mathbf{A} [\mathbf{I} \mid \mathbf{0}] \begin{bmatrix} \tilde{X}_{1} \\ \tilde{X}_{2} \\ \tilde{X}_{3} \\ 1 \end{bmatrix} + \mathbf{b} = \mathbf{A} [\mathbf{I} \mid \mathbf{0}] \tilde{\mathbf{X}} + \mathbf{b} = \mathbf{A} \mathbf{x} + \mathbf{b}$$
[Eq. 7]

$$\mathbf{x}' \times \mathbf{b} = (\mathbf{A}\mathbf{x} + \mathbf{b}) \times \mathbf{b} = \mathbf{A}\mathbf{x} \times \mathbf{b}$$
 [Eq. 8]  
 $\mathbf{x}'^T \cdot (\mathbf{x}' \times \mathbf{b}) = \mathbf{x}'^T \cdot (\mathbf{A}\mathbf{x} \times \mathbf{b}) = 0$  [Eq. 9]  
 $\mathbf{x}'^T (\mathbf{b} \times \mathbf{A}\mathbf{x}) = 0$  [Eq. 10]

#### Cross product as matrix multiplication

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}_{\times}]\mathbf{b}$$

$$\widetilde{\mathbf{X}} = M_1 H^{-1} = \begin{bmatrix} I & 0 \end{bmatrix} \qquad \mathbf{X} = M_1 H^{-1} H \mathbf{X} = [\mathbf{I} \mid \mathbf{0}] \widetilde{\mathbf{X}}$$

$$\widetilde{\mathbf{M}}_2 = M_2 H^{-1} = \begin{bmatrix} A & b \end{bmatrix} \qquad \mathbf{X}' = M_2 H^{-1} H \mathbf{X} = [\mathbf{A} \mid \mathbf{b}] \widetilde{\mathbf{X}}$$

$$\widetilde{\mathbf{X}} = \mathbf{H} \mathbf{X}$$

$$\mathbf{x} = M_1 H^{-1} H \mathbf{X} = [\mathbf{I} \mid \mathbf{0}] \widetilde{\mathbf{X}}$$

$$\mathbf{x}' = M_2 H^{-1} H \mathbf{X} = [\mathbf{A} \mid \mathbf{b}] \widetilde{\mathbf{X}}$$

$$\mathbf{x'}^T(\mathbf{b} \times \mathbf{A}\mathbf{x}) = 0$$
 [Eq. 10]

$$\mathbf{x'}^{\mathsf{T}}[\mathbf{b}_{ imes}]\mathbf{A}\mathbf{x}=0$$
 is this familiar?

$$\mathbf{F} = [\mathbf{b}_{\times}]\mathbf{A}$$

$$\mathbf{x'}^{\mathsf{T}}\mathbf{F}\;\mathbf{x}=\mathbf{0}$$

fundamental matrix!

# Compute cameras

$$\mathbf{x'}^{\mathsf{T}} \mathbf{F} \mathbf{x} = \mathbf{0}$$
  $\mathbf{F} = [\mathbf{b}_{\mathsf{x}}] \mathbf{A} = \mathbf{b} \times \mathbf{A}$  [Eq. 11]

#### Compute **b**:

Let's consider the product F b

$$\mathbf{F} \cdot \mathbf{b} = [\mathbf{b}_{\times}] \mathbf{A} \cdot \mathbf{b} = 0 \text{ [Eq. 12]}$$

- Since F is singular, we can compute b as least sq. solution of F b = 0, with |b|=1 using SVD
- Using a similar derivation, we have that  $\mathbf{b}^{\mathsf{T}} \mathbf{F} = 0^{\mathsf{[Eq. 12-bis]}}$

#### Compute cameras

$$\mathbf{X'}^{\mathrm{T}}\mathbf{F} \mathbf{X} = \mathbf{0} \qquad \mathbf{F} = [\mathbf{b}_{\times}]\mathbf{A} \qquad \begin{cases} \mathbf{F} \mathbf{b} = 0 & [\mathsf{Eq. 12}] \\ \mathbf{b}^{\mathrm{T}} \mathbf{F} = 0 & [\mathsf{Eq. 12}] \end{cases}$$

#### Compute A:

- Define:  $A' = -[b_x] F$
- Let's verify that  $[\mathbf{b}_{\times}]\mathbf{A}'$  is equal to  $\mathbf{F}$ :

Indeed: 
$$[\mathbf{b}_{\times}]\mathbf{A}' = -[\mathbf{b}_{\times}][\mathbf{b}_{\times}]\mathbf{F} = -(\mathbf{b}\ \mathbf{b}^{T} - |\mathbf{b}|^{2}\mathbf{I})\mathbf{F} = -\mathbf{b}\ \mathbf{b}^{T}\mathbf{F} + |\mathbf{b}|^{2}\mathbf{F} = 0 + 1 \cdot \mathbf{F} = \mathbf{F}$$
[Eq. 13]

• Thus,  $A = A' = -[b_{\times}] F$ 

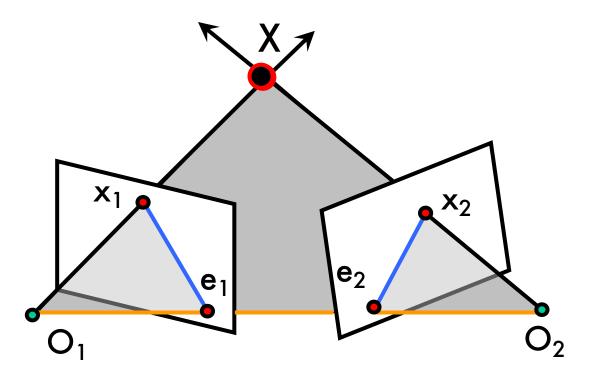
[Eqs. 14] 
$$\tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix}$$
  $\tilde{M}_2 = \begin{bmatrix} - & [\mathbf{b}_x]\mathbf{F} & \mathbf{b} \end{bmatrix}$ 

#### Interpretation of **b**

$$\mathbf{X'}^{T}\mathbf{F} \mathbf{X} = \mathbf{0} \qquad \mathbf{F} = [\mathbf{b}_{\times}]\mathbf{A} \qquad \begin{cases} \mathbf{F} \mathbf{b} = 0 & [\mathsf{Eq. 12}] \\ \mathbf{b}^{T} \mathbf{F} = 0 & [\mathsf{Eq. 12}] \end{cases}$$

What's **b**??

#### **Epipolar Constraint** [lecture 5]



F  $x_2$  is the epipolar line associated with  $x_2$  ( $I_1 = F x_2$ ) F<sup>T</sup>  $x_1$  is the epipolar line associated with  $x_1$  ( $I_2 = F^T x_1$ ) F is singular (rank two)

 $F e_2 = 0$  and  $F^T e_1 = 0$ 

F is 3x3 matrix; 7 DOF

# Interpretation of **b**

$$\mathbf{X'}^{\mathrm{T}}\mathbf{F} \mathbf{X} = \mathbf{0} \qquad \mathbf{F} = [\mathbf{b}_{\times}]\mathbf{A} \qquad \begin{cases} \mathbf{F} \mathbf{b} = 0 \\ \mathbf{b}^{\mathrm{T}} \mathbf{F} = 0 \end{cases}$$
[Eq. 11]

**b** is an epipole!

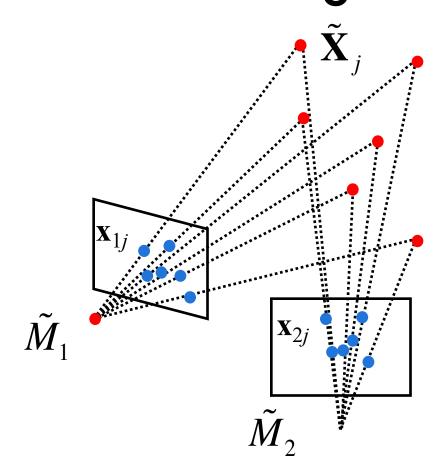
$$\tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \qquad \tilde{M}_2 = \begin{bmatrix} - & [\mathbf{b}_x]\mathbf{F} & \mathbf{b} \end{bmatrix}$$

$$\tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \qquad \tilde{M}_2 = \begin{bmatrix} - & [\mathbf{e}_x]\mathbf{F} & \mathbf{e} \end{bmatrix}$$
[Eq. 15]
$$\tilde{M}_2 = \begin{bmatrix} - & [\mathbf{e}_x]\mathbf{F} & \mathbf{e} \end{bmatrix}$$
[Eq. 16]
$$\tilde{M}_2 = [\mathbf{e}_x]\mathbf{F} = [\mathbf{e}_x]\mathbf{F}$$

PF, page 288

- 1. Compute the fundamental matrix F from two views (eg. 8 point algorithm)
- 2. Use F to estimate projective cameras
- 3. Use these cameras to triangulate and estimate points in 3D

# Triangulation



$$x_{1j} = \tilde{M}_2 \tilde{\mathbf{X}}_j$$
$$x_{2j} = \tilde{M}_1 \tilde{\mathbf{X}}_j$$

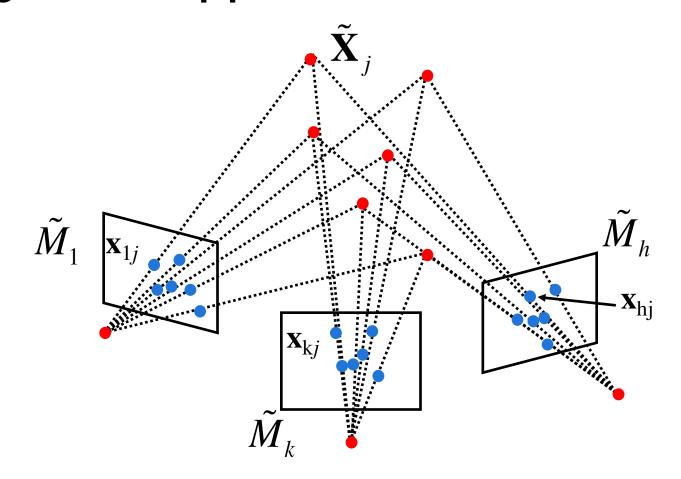
$$\tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix}$$

$$\tilde{M}_2 = \begin{bmatrix} - & [\mathbf{e}_x]\mathbf{F} & \mathbf{e} \end{bmatrix}$$

$$\rightarrow \tilde{\mathbf{X}}_j$$
 For  $j = 1, ..., n$ 

3D points can be computed from camera matrices via SVD (see page 312 of HZ for details)

# Algebraic approach: the N-views case



- From  $I_k$  and  $I_h$   $\rightarrow \tilde{M}_k$ ,  $\tilde{M}_h$ ,  $\tilde{X}_{[k,h]}$  3D points associated to point correspondences available between  $I_k$  and  $I_h$
- Pairwise solutions may be combined together using bundle adjustment

# Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

# Limitations of the approaches so far

• Factorization methods assume all points are visible.

This not true if:

- occlusions occur
- failure in establishing correspondences

Algebraic methods work with 2 views

The bundle adjustment approach addresses some of these limitations

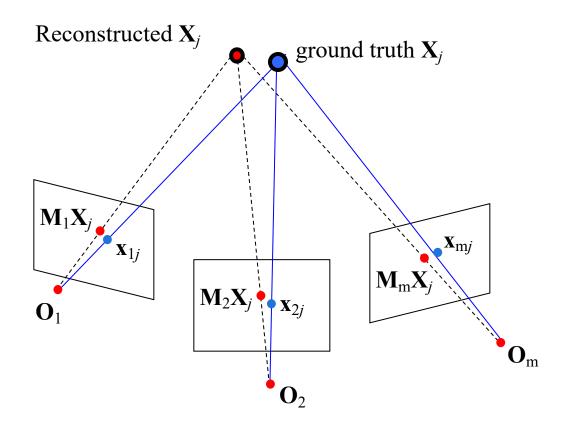
# Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

#### Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizes re-projection error

$$E(\mathbf{M}, \mathbf{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(\mathbf{x}_{ij}, \mathbf{M}_{i} \mathbf{X}_{j})^{2}$$



#### General Calibration Problem

$$E(\mathbf{M},\mathbf{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(\mathbf{x}_{ij}, \mathbf{M}_{i}\mathbf{X}_{j})^{2}$$
 parameters measurements

#### D is the nonlinear mapping

- Newton Method
- Levenberg-Marquardt Algorithm
  - Iterative, starts from initial solution
  - May be slow if initial solution far from real solution
  - Estimated solution may be function of the initial solution
  - Newton requires the computation of J, H
  - Levenberg-Marquardt doesn't require the computation of H

### Bundle adjustment

#### Advantages

- Handle large number of views
- Handle missing data

#### Limitations

- Large minimization problem (parameters grow with number of views)
- Requires good initial condition
- Used as the final step of SFM (i.e., after the factorization or algebraic approach)
- Factorization or algebraic approaches provide a initial solution for optimization problem

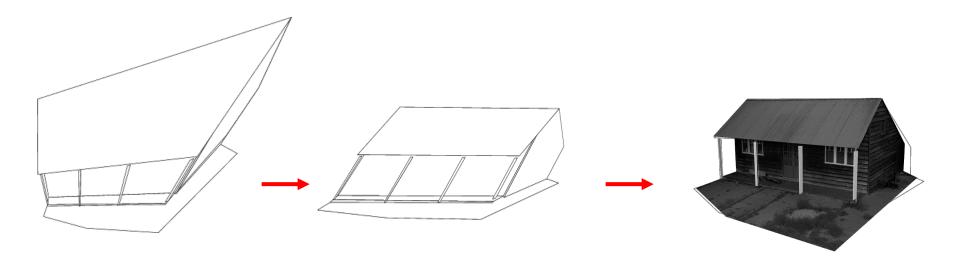
# Lecture 7 Multi-view geometry



- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications

# Self-calibration

- Self-calibration is the problem of recovering the metric reconstruction from the perspective (or affine) reconstruction
- We can self-calibrate the camera by making some assumptions about the cameras



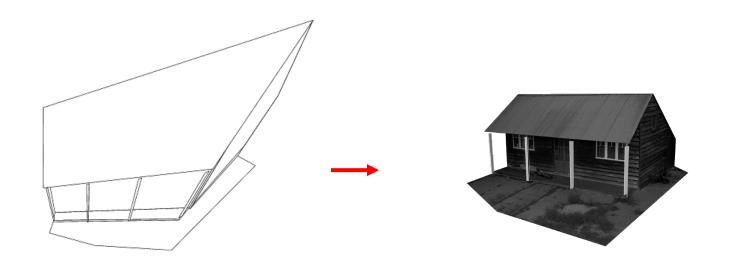
#### Self-calibration

[HZ] Chapters 19 "Auto-calibration"

#### Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach

# Inject information about the camera during the bundle adjustment optimization



For calibrated cameras, the similarity ambiguity is the only ambiguity [Longuet-Higgins '81]

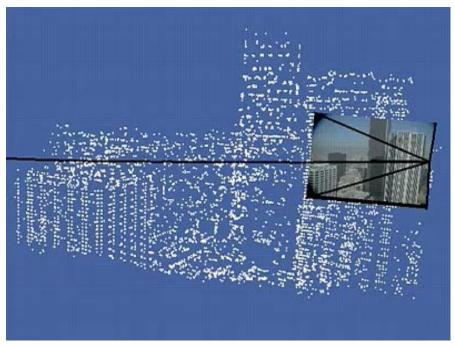
# Lecture 7 Multi-view geometry



- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications

# Structure from motion problem





Courtesy of Oxford Visual Geometry Group

Lucas & Kanade, 81 Chen & Medioni, 92 Debevec et al., 96 Levoy & Hanrahan, 96 Fitzgibbon & Zisserman, 98 Triggs et al., 99 Pollefeys et al., 99 Kutulakos & Seitz, 99 Levoy et al., 00 Hartley & Zisserman, 00 Dellaert et al., 00 Rusinkiewic et al., 02 Nistér, 04 Brown & Lowe, 04 Schindler et al, 04 Lourakis & Argyros, 04 Colombo et al. 05

Golparvar-Fard, et al. JAEI 10 Pandey et al. IFAC, 2010 Pandey et al. ICRA 2011 Microsoft's PhotoSynth Snavely et al., 06-08 Schindler et al., 08 Agarwal et al., 09 Frahm et al., 10

# Reconstruction and texture mapping

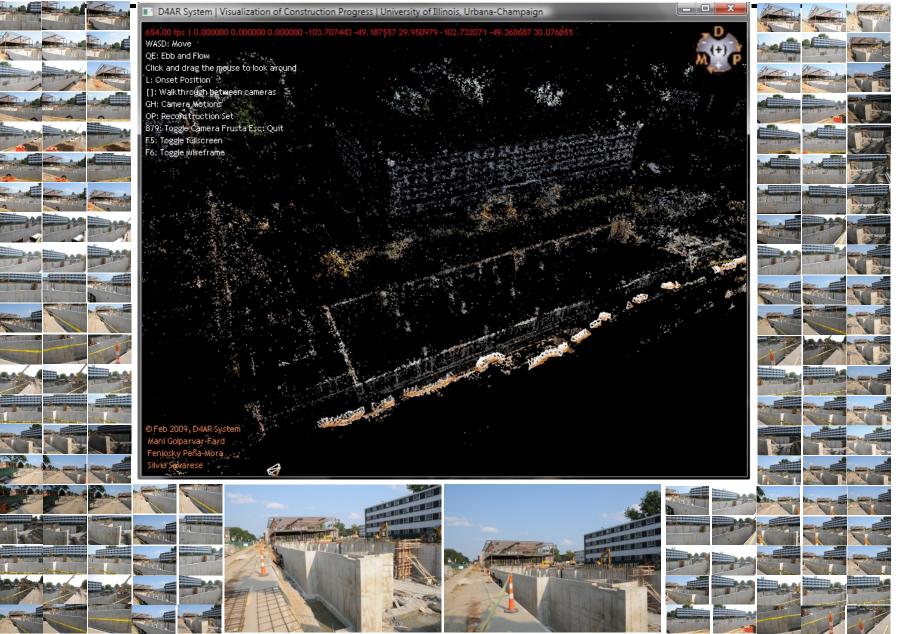
M. Pollefeys et al 98-



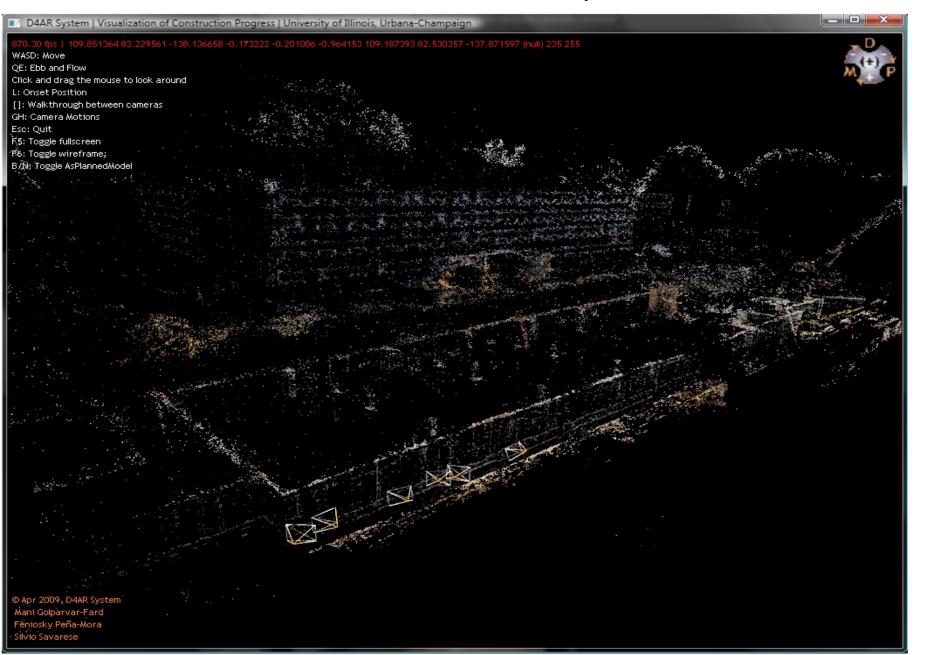


#### Incremental reconstruction of construction sites

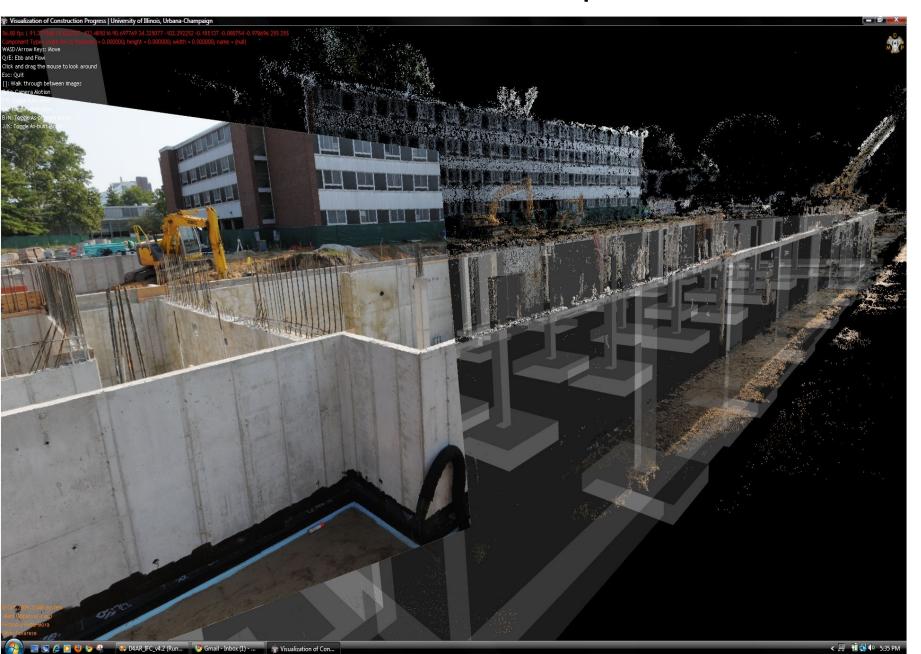
Initial pair – 2168 & Complete Set 62,323 points, 160 images Golparvar-Fard. Pena-Mora, Savarese 2008



#### Reconstructed scene + Site photos



#### Reconstructed scene + Site photos



# Results and applications

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," ACM Photosynth Transactions on Graphics (SIGGRAPH Proceedings), 2006,





# Next lecture

Active Stereo & Volumetric Stereo

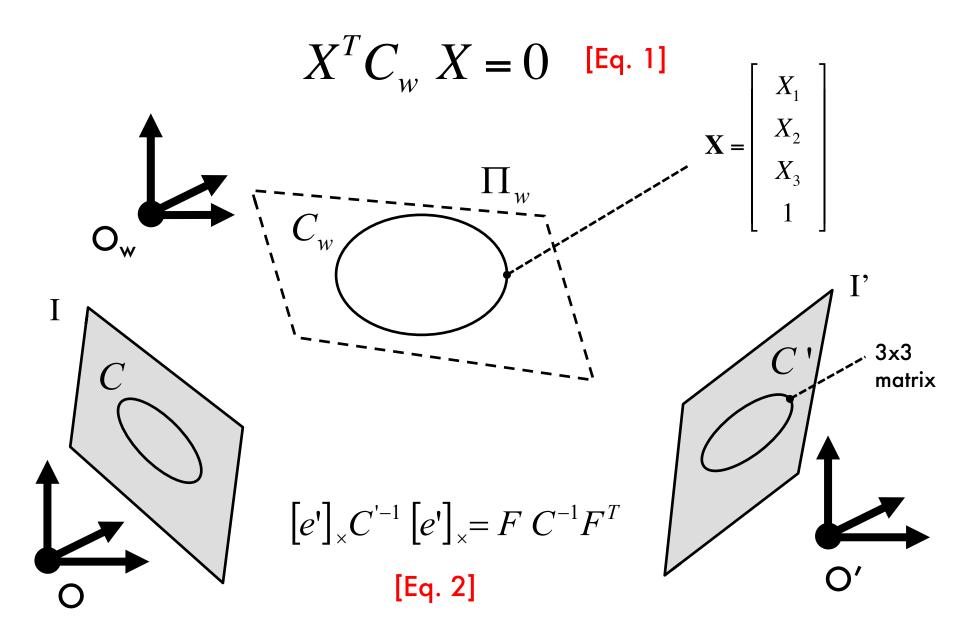
# Appendix

### Direct approach

We use the following results:

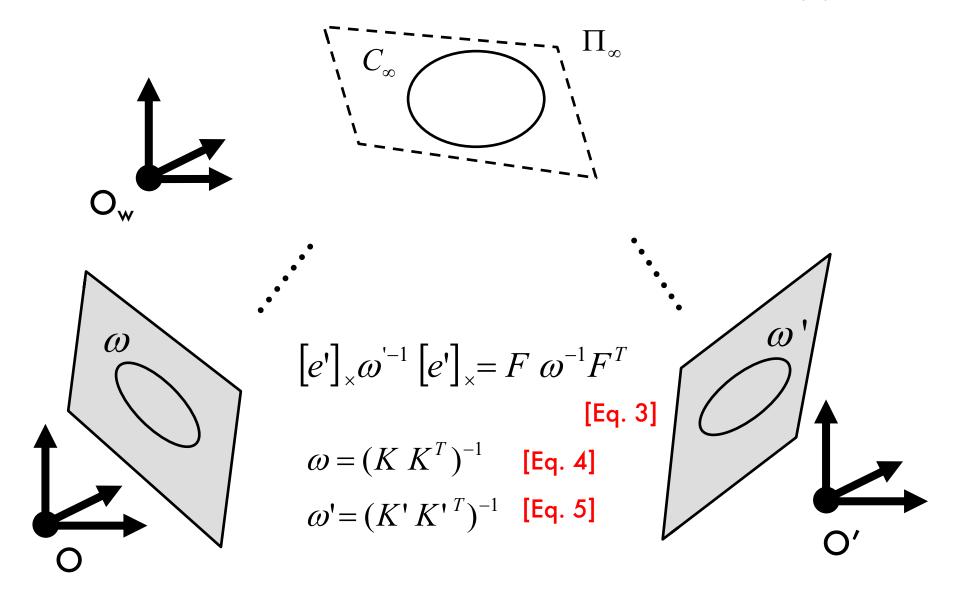
- 1. A relationship that maps conics across views
- 2. Concept of absolute conic and its relationship to K
- 3. The Kruppa equations

#### Projections of conics across views



#### Projection of absolute conics across views

From lecture 4, [HZ] page 210, sec. 8.5.1



#### Kruppa equations

[Faugeras et al. 92]

From [HZ] page 471

$$\begin{pmatrix} u_{2}^{T}K'K'^{T}u_{2} \\ -u_{1}^{T}K'K'^{T}u_{2} \\ u_{1}^{T}K'K'^{T}u_{1} \end{pmatrix} \times \begin{pmatrix} \sigma_{1}^{2}v_{1}^{T}KK^{T}v_{1} \\ \sigma_{1}\sigma_{2}v_{1}^{T}KK^{T}v_{2} \\ \sigma_{2}^{2}v_{2}^{T}KK^{T}v_{2} \end{pmatrix} = 0$$
 [Eq. 6]

where  $u_i$ ,  $v_i$  and  $\sigma_i$  are the columns and singular values of SVD of F

These give us two independent constraints in the elements of K and K'

#### Kruppa equations

[Faugeras et al. 92]

$$\begin{pmatrix} u_{2}^{T}K'K'^{T}u_{2} \\ -u_{1}^{T}K'K'^{T}u_{2} \\ u_{1}^{T}K'K'^{T}u_{1} \end{pmatrix} \times \begin{pmatrix} \sigma_{1}^{2}v_{1}^{T}KK^{T}v_{1} \\ \sigma_{1}\sigma_{2}v_{1}^{T}KK^{T}v_{2} \\ \sigma_{2}^{2}v_{2}^{T}KK^{T}v_{2} \end{pmatrix} = 0$$

$$\frac{u_2^T K K^T u_2}{\sigma_1^2 v_1^T K K^T v_1} = \frac{-u_1^T K K^T u_2}{\sigma_1 \sigma_2 v_1^T K K^T v_2} = \frac{u_1^T K K^T u_1}{\sigma_2^2 v_2^T K K^T v_2}$$
 [Eq. 7]

• Let's make the following assumption:  $K'=K=\begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix}$  [Eq. 8]

[Eq. 9] 
$$\alpha f^2 + \beta f + \gamma = 0 \longrightarrow f$$

#### Kruppa equations

[Faugeras et al. 92]

- Powerful if we want to self-calibrate 2 cameras with unknown focal length
- Limitations:
  - Work on a camera pair
  - Don't work if R=0

[Eq. 10] 
$$[e']_{\times}\omega^{-1} [e']_{\times} = F \omega^{-1} F^T$$
 becomes trivial Since:  $F = [e']_{\times}$ 

### Self-calibration

[HZ] Chapters 19 "Auto-calibration"

#### Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach

## Algebraic approach Multi-view approach

Suppose we have a projective reconstruction  $\{\tilde{M}_i, \tilde{X}_j\}$  Let H be a homography such that:

$$\begin{cases} \text{First perspective camera is canonical: } \tilde{M}_1 = [ \ I \ 0 \ ] \text{ [Eq. 11]} \\ \\ \text{i}^{\text{th}} \text{ perspective reconstruction of the camera (known): } \tilde{\mathbf{M}}_{i} = [ \ A_{i} \ b_{i} \ ] \\ \\ \text{[Eq. 12]} \end{cases}$$

[Eq. 13] 
$$\left( A_i - b_i p^T \right) K_1 K_1^T \left( A_i - b_i p^T \right)^T = K_i K_i^T$$

$$\text{[Eq. 14]} \ H = \begin{bmatrix} K_1 & 0 \\ -p^T K_1 & 1 \end{bmatrix}$$

$$p \text{ is an unknown } 3x1 \text{ vector }$$

$$K_1 \dots K_m \text{ are unknown}$$

### Algebraic approach Multi-view approach

Suppose we have a projective reconstruction

Let H be a homography such that:

First perspective camera is canonical: 
$$\tilde{M}_1 = [I \ 0]$$
 [Eq. 11] 
$$\begin{bmatrix} i^{th} \text{ perspective reconstruction of the camera (known): } \tilde{\mathbf{M}}_i = [A_i \ b_i] \\ [Eq. 12]$$

[Eq. 13] 
$$(A_i - b_i p^T) K_1 K_1^T (A_i - b_i p^T)^T = K_i K_i^T$$
 i=2...m

How many unknowns?

- 3 from *p*
- 5 m from K<sub>1</sub>...K<sub>m</sub>

How many equations? 5 independent equations [per view]

## Algebraic approach Multi-view approach

Suppose we have a projective reconstruction

Let H be a homography such that:

First perspective camera is canonical: 
$$\tilde{M}_1 = [I \ O]$$
 [Eq. 11] 
$$\begin{bmatrix} i^{th} \text{ perspective reconstruction of the camera (known): } \tilde{M}_i = [A_i \ b_i] \end{bmatrix}$$
 [Eq. 12]

Assume all camera matrices are identical:  $K_1 = K_2 \dots = K_m$ 

[Eq. 15] 
$$(A_i - b_i p^T) K K^T (A_i - b_i p^T)^T = K K^T$$
 i=2...m

How many unknowns?

- 3 from *p*
- 5 from K

How many equations? 5 independent equations [per view]

We need at least 3 views to solve the self-calibration problem

### Algebraic approach

#### Art of self-calibration:

Use assumptions on Ks to generate enough equations on the unknowns

| Condition                                                                          | N. Views |
|------------------------------------------------------------------------------------|----------|
| Constant internal parameters                                                       | 3        |
| <ul><li>Aspect ratio and skew known</li><li>Focal length and offset vary</li></ul> | 4        |
| • Skew =0, all other parameters vary                                               | 8        |

Issue: the larger is the number of view, the harder is the correspondence problem

Bundle adjustment helps!

### SFM problem - summary

- 1. Estimate structure and motion up perspective transformation
  - 1. Algebraic
  - 2. factorization method
  - 3. bundle adjustment
- 2. Convert from perspective to metric (self-calibration)
- 3. Bundle adjustment

```
** or **
```

1. Bundle adjustment with self-calibration constraints