## Lecture 6

 Stereo SystemsMulti-view geometry


## Professor Silvio Savarese

Computational Vision and Geometry Lab

## Lecture 6

## Stereo Systems <br> Multi-view geometry



- Stereo systems
- Rectification
- Correspondence problem
- Multi-view geometry
- The SFM problem
- Affine SFM

Reading: [AZ] Chapter: 9 "Epip. Geom. and the Fundam. Matrix Transf."
[AZ] Chapter: 18 " N view computational methods"
[FP] Chapters: 7 "Stereopsis"
[FP] Chapters: 8 "Structure from Motion"

## Epipolar geometry



- Epipolar Plane
- Baseline
- Epipolar Lines
- Epipoles e, $\mathrm{e}^{\prime}$
$=$ intersections of baseline with image planes
= projections of the other camera center


## Epipolar Constraint



$$
p^{T} E p^{\prime}=0
$$

$$
E=\left[T_{\star}\right] \cdot R
$$

$\mathbf{E}=$ Essential Matrix
(Longuet-Higgins, 1981)

## Epipolar Constraint



$$
\mathrm{p}^{\mathrm{T}} \mathrm{Fp}^{\prime}=0
$$

$$
F=K^{-T} \cdot\left[T_{\star}\right] \cdot R K^{\prime-1}
$$

F = Fundamental Matrix
(Faugeras and Luong, 1992)

## Parallel image planes



## Parallel image planes



## Essential matrix for parallel images

$$
\begin{gathered}
\mathbf{E}=\left[\mathbf{T}_{\times}\right] \cdot \mathbf{R} \\
\mathbf{E}=\left[\begin{array}{ccc}
0 & -T_{z} & T_{y} \\
T_{z} & 0 & -T_{x} \\
-T_{y} & T_{x} & 0
\end{array}\right] \mathbf{R}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right] \\
\mathbf{T}=\left[\begin{array}{lll}
\mathrm{T} & 0 & 0
\end{array}\right] \\
\mathbf{R}=\mathbf{I}
\end{gathered}
$$

## Parallel image planes



What are the directions of epipolar lines?

$$
l=\mathrm{E} p^{\prime}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-T \\
T v^{\prime}
\end{array}\right] \text { horizontal! }
$$

## Parallel image planes



How are $p$
and $\mathrm{p}^{\prime}$
$p^{T} \cdot E p^{\prime}=0$
related?

## Parallel image planes


$\begin{aligned} & \text { How are } \\ & \begin{array}{l}\text { p and } \mathrm{p}^{\prime} \\ \text { related? }\end{array}\end{aligned} \Rightarrow\left(\begin{array}{lll}u & v & 1\end{array}\right)\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0\end{array}\right]\left(\begin{array}{l}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right)=0 \Rightarrow\left(\begin{array}{lll}u & v & 1\end{array}\right)\left(\begin{array}{c}0 \\ -T \\ T v^{\prime}\end{array}\right)=\begin{aligned} & 0\end{aligned} \begin{aligned} & \Rightarrow v=T v^{\prime} \\ & \\ & \Rightarrow v=v^{\prime}\end{aligned}$

## Parallel image planes



Rectification: making two images "parallel"

## Rectification: making two images "parallel"



## Parallel image planes



Rectification: making two images "parallel"

- Epipolar constraint $\rightarrow \mathrm{v}=\mathrm{v}^{\prime}$


## Why are parallel images useful?



- Makes triangulation easy
- Makes the correspondence problem easier


## Point triangulation



$$
p=\left[\begin{array}{c}
p_{u} \\
p_{v} \\
1
\end{array}\right] \quad p^{\prime}=\left[\begin{array}{c}
p_{u}^{\prime} \\
p_{v} \\
1
\end{array}\right]
$$

disparity $=p_{u}-p_{u}^{\prime} \propto \frac{B \cdot f}{z}$
[Eq. 1]

Disparity is inversely proportional to depth $z$ !

## Disparity maps

http://vision.middlebury.edu/stereo/


$$
p_{u}-p_{u}^{\prime} \propto \frac{B \cdot f}{z}
$$

[Eq. 1]

Stereo pair


Disparity map / depth map

## Why are parallel images useful?



- Makes triangulation easy
- Makes the correspondence problem easier


## Correspondence problem



Given a point in 3D, discover corresponding observations in left and right images [also called binocular fusion problem]

## Correspondence problem



When images are rectified, this problem is much easier!

## Correspondence problem

- A Cooperative Model (Marr and Poggio, 1976)
- Correlation Methods (1970-)
- Multi-Scale Edge Matching (Marr, Poggio and Grimson, 1979-81)
[FP] Chapters: 7


## Correlation Methods (1970-)



$$
\bar{p}=\left[\begin{array}{c}
\bar{u} \\
\bar{v} \\
1
\end{array}\right] \quad \bar{p}^{\prime}=\left[\begin{array}{c}
\bar{u}^{\prime} \\
\bar{v} \\
1
\end{array}\right]
$$

Correlation Methods (1970-)


$$
\bar{p}=\left[\begin{array}{c}
\bar{u} \\
\bar{v} \\
1
\end{array}\right] \quad \bar{p}^{\prime}=\left[\begin{array}{c}
\bar{u}^{\prime} \\
\bar{v} \\
1
\end{array}\right]
$$

Correlation Methods (1970-)


What's the problem with this?

## Window-based correlation



- Pick up a window $\mathbf{W}$ around $\bar{p}=(\bar{u}, \bar{v})$


## Window-based correlation



Example: $\mathbf{W}$ is a $3 \times 3$ window in red

```
w is a 9x1 vector
w = [100, 100, 100, 90, 100, 20, 150, 150, 145] }\mp@subsup{}{}{\top
```

- Pick up a window $\mathbf{W}$ around $\bar{p}=(\bar{u}, \bar{v})$
- Build vector w
- Slide the window $\mathbf{W}$ along $v=\bar{v}$ in image 2 and compute $\mathbf{w}^{\prime}(u)$ for each $u$
- Compute the dot product $\mathbf{w}^{\top} \mathbf{w}^{\boldsymbol{\prime}}(\mathrm{u})$ for each $u$ and retain the max value


## Window-based correlation



Example: $\mathbf{W}$ is a $3 \times 3$ window in red

$$
\begin{aligned}
& \mathbf{w} \text { is a } 9 x 1 \text { vector } \\
& \mathbf{w}=[100,100,100,90,100,20,150,150,145]^{\top}
\end{aligned}
$$

## What's the problem with this?

## Changes of brightness/exposure



Changes in the mean and the variance of intensity values in corresponding windows!

## Normalized cross-correlation



Find $u$ that maximizes: $\frac{(w-\bar{w})^{T}\left(w^{\prime}(u)-\bar{w}^{\prime}\right)}{\|(w-\bar{w})\|\left\|\left(w^{\prime}(u)-\bar{w}^{\prime}\right)\right\|} \quad$ [Eq. 2]
$\bar{w}=$ mean value within $\mathbf{W}$ located at $u^{\text {bar }}$ in image 1

$$
\bar{w}^{\prime}(u)=\begin{aligned}
& \text { mean value within } \mathbf{W} \\
& \text { located at } u \text { in image } 2
\end{aligned}
$$

## Example



Credit slide S. Lazebnik

## Effect of the window's size




Window size $=3$


Window size $=20$

- Smaller window
- More detail
- More noise
- Larger window
- Smoother disparity maps
- Less prone to noise


## Issues

- Fore shortening effect

- Occlusions


## Base line trade-off

- To reduce the effect of foreshortening and occlusions, it is desirable to have small $B / z$ ratio!
- However, when $B / z$ is small, small errors in measurements imply large error in estimating depth


## Base line trade-off

- To reduce the effect of foreshortening and occlusions, it is desirable to have small B/z ratio!
- However, when $B / z$ is small, small errors in measurements imply large error in estimating depth



## Base line trade-off

- To reduce the effect of foreshortening and occlusions, it is desirable to have small $B / z$ ratio!
- However, when $B / z$ is small, small errors in measurements imply large error in estimating depth



## More issues!

- Homogeneous regions



## More issues!

- Repetitive patterns



## Correspondence problem is difficult!

- Occlusions
- Fore shortening
- Baseline trade-off
- Homogeneous regions
- Repetitive patterns

Apply non-local constraints to help enforce the correspondences

## Non-local constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views
- Smoothness
- Disparity is typically a smooth function of $x$ (except in occluding boundaries)


## Why are parallel images useful?



- Makes triangulation easy
- Makes the correspondence problem easier


## Application: view morphing

S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30


## Rectification





From its reflection!


## Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017


## Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017


## Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017


## Lecture 6

## Stereo Systems <br> Multi-view geometry



- Stereo systems
- Rectification
- Correspondence problem
- Multi-view geometry
- The SFM problem
- Affine SFM


## Structure from motion problem



Courtesy of Oxford Visual Geometry Group

## Structure from motion problem



Given $m$ images of $n$ fixed 3D points

$$
\cdot \mathbf{x}_{i j}=\mathbf{M}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

## Structure from motion problem



From the $m \times n$ observations $\mathbf{x}_{i j}$, estimate:

- m projection matrices $\mathbf{M}_{i}$
- $n$ 3D points $X_{j}$


## Affine structure from motion

(simpler problem)


From the $m \times n$ observations $\mathbf{x}_{i j}$ estimate:

- $m$ projection matrices $\mathbf{M}_{i}$ (affine cameras)
- $n$ 3D points $X_{j}$

$$
\text { Perspective } \mathbf{X}=M \mathbf{X}=\left[\begin{array}{c}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right] \mathbf{X}=\left[\begin{array}{c}
\mathbf{m}_{1} \mathbf{X} \\
\mathbf{m}_{2} \mathbf{X} \\
\mathbf{m}_{3} \mathbf{X}
\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{v} & \mathbf{1}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right]
$$

$$
\mathbf{x}^{E}=\left(\frac{\mathbf{m}_{1} \mathbf{X}}{\mathbf{m}_{3} \mathbf{X}}, \frac{\mathbf{m}_{2} \mathbf{X}}{\mathbf{m}_{3} \mathbf{X}}\right)^{T}
$$

$$
\left.\begin{array}{l}
\text { Affine } \\
\left.\qquad \begin{array}{l}
\mathbf{X}=M \mathbf{X}=\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right] \mathbf{X}=\left[\begin{array}{c}
\mathbf{m}_{1} \mathbf{X} \\
\mathbf{m}_{2} \mathbf{X} \\
1
\end{array}\right]
\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right]
\end{array} \begin{array}{l}
=\left[\begin{array}{cc}
\mathbf{A}_{2 \times 3} & \mathbf{b}_{2 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right] \\
=\left[\begin{array}{cc}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
0 & 0
\end{array}\right]
\end{array}\right]
$$

## Affine cameras



For the affine case (in Euclidean space)


## The Affine Structure-from-Motion Problem

Given $m$ images of $n$ fixed points $\mathbf{X}_{i}$ we can write

Problem: estimate m matrices $A_{i,} m$ matrices $b_{i}$ and the $n$ positions $\mathbf{X}_{\mathrm{i}}$ from the $m \times n$ observations $\mathbf{x}_{\mathrm{ij}}$.

## Next lecture

Multiple view geometry: Affine and Perspective structure from Motion

