Lecture 6 Stereo Systems Multi-view geometry

Professor Silvio Savarese Computational Vision and Geometry Lab

Silvio Savarese & Jeanette Bohg

Lecture 6 -

Lecture 6 Stereo Systems Multi-view geometry

- Stereo systems
 - Rectification
 - Correspondence problem
- Multi-view geometry
 - The SFM problem
 - Affine SFM
- Reading:
- [AZ] Chapter: 9 "Epip. Geom. and the Fundam. Matrix Transf."
 - [AZ] Chapter: 18 "N view computational methods"
 - [FP] Chapters: 7 "Stereopsis"
 - [FP] Chapters: 8 "Structure from Motion"

Silvio Savarese & Jeanette Bohg

Lecture 6 -

- Epipolar Plane
- Baseline
- Epipolar Lines

- Epipoles e, e'
 - = intersections of baseline with image planes
 - = projections of the other camera center

(Faugeras and Luong, 1992)

Essential matrix for parallel images

 $\mathbf{T} = \begin{bmatrix} T & 0 & 0 \end{bmatrix}$ $\mathbf{R} = \mathbf{I}$

How are p and p' related?

 $p^T \cdot E p' = 0$

How are p and p' related? $\Rightarrow \begin{pmatrix} u & v & 1 \end{pmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} u & v & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -T \\ Tv' \end{pmatrix} = 0 \Rightarrow Tv = Tv'$ $\Rightarrow v = v'$

Rectification: making two images "parallel"

Rectification: making two images "parallel"

Courtesy figure S. Lazebnik

Rectification: making two images "parallel"

• Epipolar constraint $\rightarrow v = v'$

Why are parallel images useful?

- Makes triangulation easy
- Makes the correspondence problem easier

Point triangulation

Disparity maps

http://vision.middlebury.edu/stereo/

 $p_u - p'_u \propto \frac{B \cdot f}{z}$ [Eq. 1]

Stereo pair

Disparity map / depth map

Why are parallel images useful?

- Makes triangulation easy
- Makes the correspondence problem easier

Given a point in 3D, discover corresponding observations in left and right images [also called binocular fusion problem]

When images are rectified, this problem is much easier!

Correspondence problem

• A Cooperative Model (Marr and Poggio, 1976)

• Correlation Methods (1970–)

• Multi-Scale Edge Matching (Marr, Poggio and Grimson, 1979-81)

[FP] Chapters: 7

Correlation Methods (1970-)

image 1

Image 2

$$\overline{p} = \begin{bmatrix} \overline{u} \\ \overline{v} \\ 1 \end{bmatrix} \qquad \overline{p}' = \begin{bmatrix} \overline{u}' \\ \overline{v} \\ 1 \end{bmatrix}$$

Correlation Methods (1970-)

Image 2

$$\overline{p} = \begin{bmatrix} \overline{u} \\ \overline{v} \\ 1 \end{bmatrix} \qquad \overline{p}' = \begin{bmatrix} \overline{u}' \\ \overline{v} \\ 1 \end{bmatrix}$$

Correlation Methods (1970-)

What's the problem with this?

Window-based correlation

image 2

• Pick up a window **W** around $\overline{p} = (\overline{u}, \overline{v})$

Window-based correlation

Example: W is a 3x3 window in red

w is a 9x1 vector **w** = [100, 100, 100, 90, 100, 20, 150, 150, 145][⊤]

- Pick up a window **W** around $\overline{p} = (\overline{u}, \overline{v})$
- Build vector w
- Slide the window **W** along $v = \overline{V}$ in image 2 and compute **w**' (u) for each u
- Compute the dot product **w^T w'**(u) for each u and retain the max value

Window-based correlation

Example: W is a 3x3 window in red

w is a 9x1 vector **w** = [100, 100, 100, 90, 100, 20, 150, 150, 145]^T

What's the problem with this?

Changes of brightness/exposure

Changes in the mean and the variance of intensity values in corresponding windows!

Normalized cross-correlation

$$\frac{(w-\overline{w})^T(w'(u)-\overline{w}')}{\left\|(w-\overline{w})\right\|\left\|(w'(u)-\overline{w}')\right\|} \quad [Eq. 2]$$

 \overline{W} = mean value within **W** located at u^{bar} in image 1 $\overline{w}'(u) = \text{mean value within } \mathbf{W}$ located at u in image 2

-0.8

-20

20

40

U

-40

Credit slide S. Lazebnik

Effect of the window's size

Window size = 3

Window size = 20

- Smaller window
 - More detail
 - More noise
- Larger window
 - Smoother disparity maps
 - Less prone to noise

Credit slide S. Lazebnik

lssues

• Fore shortening effect

Base line trade-off

- To reduce the effect of foreshortening and occlusions, it is desirable to have small B / z ratio!
- However, when B/z is small, small errors in measurements imply large error in estimating depth

Base line trade-off

- To reduce the effect of foreshortening and occlusions, it is desirable to have small B / z ratio!
- However, when B/z is small, small errors in measurements imply large error in estimating depth

Base line trade-off

- To reduce the effect of foreshortening and occlusions, it is desirable to have small B / z ratio!
- However, when B/z is small, small errors in measurements imply large error in estimating depth

More issues!

• Homogeneous regions

mismatch

More issues!

• Repetitive patterns

Correspondence problem is difficult!

- Occlusions
- Fore shortening
- Baseline trade-off
- Homogeneous regions
- Repetitive patterns

Apply non-local constraints to help enforce the correspondences

Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views
- Smoothness
 - Disparity is typically a smooth function of x (except in occluding boundaries)

Why are parallel images useful?

- Makes triangulation easy
- Makes the correspondence problem easier

Application: view morphing

S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30

Rectification

From its reflection!

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Lecture 6 Stereo Systems Multi-view geometry

17-Apr-24

Lecture 5 -

- Stereo systems
 - Rectification
 - Correspondence problem
- Multi-view geometry
 - The SFM problem
 - Affine SFM

Structure from motion problem

Courtesy of Oxford Visual Geometry Group

Given *m* images of *n* fixed 3D points

• $\mathbf{x}_{ij} = \mathbf{M}_i \mathbf{X}_j$, i = 1, ..., m, j = 1, ..., n

From the mxn observations x_{ij} , estimate:• m projection matrices M_i motion• n 3D points X_j structure

From the m_{xn} observations x_{ij} , estimate:

- m projection matrices M_i (affine cameras)
- n 3D points X_j

Perspective $\mathbf{X} = M \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \mathbf{X} \\ \mathbf{m}_2 \mathbf{X} \\ \mathbf{m}_3 \mathbf{X} \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{v} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix}$

$$\mathbf{X}^{E} = \left(\frac{\mathbf{m}_{1} \mathbf{X}}{\mathbf{m}_{3} \mathbf{X}}, \frac{\mathbf{m}_{2} \mathbf{X}}{\mathbf{m}_{3} \mathbf{X}}\right)^{T}$$

Fine $\mathbf{X} = \mathbf{M} \ \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \mathbf{X} \\ \mathbf{m}_2 \mathbf{X} \\ \mathbf{1} \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{2x3} & \mathbf{b}_{2x1} \\ \mathbf{0}_{1x3} & \mathbf{1} \end{bmatrix}$ $= \begin{bmatrix} \mathbf{M}_1 \\ \mathbf{0}_{1x3} & \mathbf{1} \end{bmatrix}$ Affine $\mathbf{X}^{E} = (\mathbf{m}_{1} \mathbf{X}, \mathbf{m}_{2} \mathbf{X})^{T} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \mathbf{A}\mathbf{X}^{E} + \mathbf{b} \qquad \mathbf{X}^{E} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ [Eq. 3] magnification

Affine cameras

For the affine case (in Euclidean space)

$$\mathbf{X}_{ij} = \mathbf{A}_{i} \mathbf{X}_{j} + \mathbf{b}_{i}$$
 [Eq. 4]
2x1 2x3 3x1 2x1

The Affine Structure-from-Motion Problem

Given m images of n fixed points \mathbf{X}_i we can write

$$\mathbf{X}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i \qquad \text{for i = 1, ...,m} \text{ and j = 1, ...,n}$$

N. of cameras N. of points

Problem: estimate m matrices A_i , m matrices b_i and the n positions X_i from the m×n observations x_{ij} .

Next lecture

Multiple view geometry: Affine and Perspective structure from Motion