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Lecture 6 -  Silvio Savarese & Jeanette Bohg 17-Apr-24

• Stereo systems
• Rectification
• Correspondence problem

• Multi-view geometry
• The SFM problem
• Affine SFM

Reading: [AZ]   Chapter: 9  “Epip. Geom. and the Fundam. Matrix Transf.”
 [AZ]   Chapter: 18  “N view computational methods”
 [FP]   Chapters: 7 “Stereopsis”
 [FP]   Chapters: 8 “Structure from Motion”  

Lecture 6
Stereo Systems
Multi-view geometry



• Epipolar Plane • Epipoles e, e’

• Epipolar Lines
• Baseline

Epipolar geometry
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= intersections of baseline with image planes 
= projections of the other camera center
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Epipolar Constraint

0=¢pEpT

E = Essential Matrix
(Longuet-Higgins, 1981)
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Epipolar Constraint

0pFpT =¢

F = Fundamental Matrix
(Faugeras and Luong, 1992)
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Parallel image planes

• Epipolar lines are horizontal
• Epipoles go to infinity
• v-coordinates are equal
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O1 O2

Parallel image planes

E=?K1=K2 = known
Hint :

x parallel to O1O2

R = I     T = (T, 0, 0)
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−Ty Tx 0

"

#

$
$
$
$

%

&

'
'
'
'

R =
0 0 0
0 0 −T
0 T 0

"

#

$
$
$

%

&

'
'
'

Essential matrix for parallel images

T = [ T  0  0 ]
R = I

[ ] RTE ×= ´
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Parallel image planes

x

y

z

horizontal!
What are the 
directions of 
epipolar lines?
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Parallel image planes

How are p 
and p’ 
related?

pT ⋅ E p ' = 0
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Parallel image planes
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Parallel image planes

Rectification: making two images “parallel” 
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Rectification: making two images “parallel” 

H

Courtesy figure S. Lazebnik
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Parallel image planes

Rectification: making two images “parallel” 
• Epipolar constraint ® v = v’
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Why are parallel images useful?

• Makes triangulation easy
• Makes the correspondence problem easier



Point triangulation
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pu − p 'udisparity = [Eq. 1]∝
B ⋅ f
z
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Disparity is inversely proportional to depth z!



Disparity maps
http://vision.middlebury.edu/stereo/

Stereo pair

Disparity map / depth map

pu p’u
[Eq. 1]

pu − p 'u ∝
B ⋅ f
z



Why are parallel images useful?

• Makes triangulation easy
• Makes the correspondence problem easier



Correspondence problem
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Given a point in 3D, discover corresponding observations 
in left and right images [also called binocular fusion problem]

p’ belongs to l’ = FT pp belongs to l = F p’ 



Correspondence problem
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When images are rectified, this problem is much easier!



•A Cooperative Model  (Marr and Poggio, 1976)

•Correlation Methods (1970--)

•Multi-Scale Edge Matching (Marr, Poggio and Grimson, 1979-81)

Correspondence problem

   [FP] Chapters: 7 
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Correlation Methods (1970--)

image 1

Where is  is  ?p '

Image 2
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image 1

Where is  is  ?p '

Image 2

Correlation Methods (1970--)
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image 1

Where is  is  ?p '

Image 2

Correlation Methods (1970--)

100
30 170 100

Image 2

130

What’s the problem with this?
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• Pick up a window W around

image 1

p = (u,v )

image 2

W

u u

Window-based correlation
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v
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• Pick up a window W around

image 1

p = (u,v )
• Build vector w

Example: W is a 3x3 window in red
w is a 9x1 vector
w = [100, 100, 100, 90, 100, 20, 150, 150, 145]T

• Slide the window W along v =     in image 2 and compute w’ (u) for each u

image 2

v

100 100100

90 100 20

150 150145

• Compute the dot product wT w’(u) for each u and retain the max value

uu

Window-based correlation

W

u u ' = u + d = u −1
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Window-based correlation

image 1

Example: W is a 3x3 window in red
w is a 9x1 vector
w = [100, 100, 100, 90, 100, 20, 150, 150, 145]T

image 2

uu

What’s the problem with this?

u ' = u + d = u −1
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Changes of brightness/exposure

Changes in the mean and the variance of intensity values in corresponding 
windows!



Normalized cross-correlation

Find u that maximizes:
(w−w)T ( "w (u)− "w )
(w−w) ( "w (u)− "w ) [Eq. 2]

w = w '(u) =mean value within W
located at ubar in image 1

mean value within W 
located at u in image 2

image 1 image 2
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Image 1 Image 2

scanline

Example

NCC

Credit slide S. Lazebnik
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– Smaller window
- More detail
- More noise

– Larger window
- Smoother disparity maps
- Less prone to noise

Window size = 3 Window size = 20

Effect of the window’s size

Credit slide S. Lazebnik



Issues

•Fore shortening effect

•Occlusions

O
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Base line trade-off

• However, when B/z is small, small 
errors in measurements  imply large 
error in estimating depth

• To reduce the effect of foreshortening 
and occlusions, it is desirable to have 
small B / z ratio! 



Base line trade-off

• However, when B/z is small, small 
errors in measurements  imply large 
error in estimating depth

• To reduce the effect of foreshortening 
and occlusions, it is desirable to have 
small B / z ratio! 
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Large B / z ratio
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Base line trade-off

• However, when B/z is small, small 
errors in measurements  imply large 
error in estimating depth

• To reduce the effect of foreshortening 
and occlusions, it is desirable to have 
small B / z ratio! 

O O’

u u’ ue’ u u’ ue’

Large B / z ratio

Small 
B / z ratio



• Homogeneous regions 

More issues!

mismatch



•Repetitive patterns 

More issues!



Correspondence problem is difficult!

- Occlusions
- Fore shortening
- Baseline trade-off
- Homogeneous regions
- Repetitive patterns

Apply non-local constraints to help 
enforce the correspondences



• Uniqueness 
– For any point in one image, there should be at most 

one matching point in the other image

• Ordering
– Corresponding points should be in the same order in 

both views

• Smoothness
– Disparity is typically a smooth function of x (except 

in occluding boundaries)

Non-local constraints



Why are parallel images useful?

• Makes triangulation easy
• Makes the correspondence problem easier



Application: view morphing
S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30 



Rectification
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From its reflection!





Deep view morphing
D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017



Deep view morphing
D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017



Deep view morphing
D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017
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• Stereo systems
• Rectification
• Correspondence problem

• Multi-view geometry
• The SFM problem
• Affine SFM

Lecture 6
Stereo Systems
Multi-view geometry



Courtesy of Oxford Visual Geometry Group

Structure from motion problem



Structure from motion problem

x1j

x2j

xmj

Xj

M1

M2

Mm

Given m images of n fixed 3D points 

•xij = Mi Xj , i = 1, … , m,    j = 1, … , n  



From the mxn observations xij, estimate: 
•m projection matrices Mi 
•n 3D points Xj

x1j

x2j

xmj

Xj

motion
structure

M1

M2

Mm

Structure from motion problem



Affine structure from motion
(simpler problem)

Image 1

World point Xj

Image i

From the mxn observations xij, estimate: 
•m projection matrices Mi (affine cameras)
•n 3D points Xj 

…. xij
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Xj

xij =AiX j +bi

Affine cameras

For the affine case (in Euclidean space)

xi j

x1j

Image i

Image 1

….

[Eq. 4]

2x1 2x3 2x13x1



The Affine Structure-from-Motion Problem

Given m images of n fixed points Xj we can write

Problem: estimate m matrices Ai, m matrices bi 
 and the n positions Xj from the m´n observations xij  .

N. of cameras N. of points
xij =AiX j +bi for i = 1, …,m   and j = 1, … ,n



Next lecture

Multiple view geometry:
Affine and Perspective structure 
from Motion 


