CS231A Computer Vision: From 3D Reconstruction to Recognition

Representation & Representation Learning

Silvio Savarese & Jeannette Bohg

Lecture 10

How to reach me?

- Jeannette Bohg, CS, Assistant Professor in Robotics
- Office hours, Wednesdays 9am, Gates 244 or on zoom

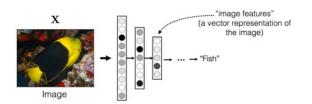
Silvio Savarese & Jeannette Bohg

Lecture 10

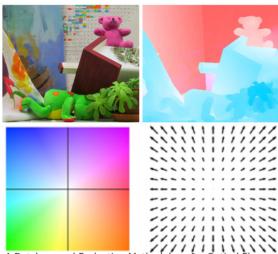
2

Learning Goals for Upcoming Lectures

Representations & Representation Learning

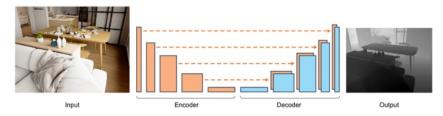


Optical & Scene Flow

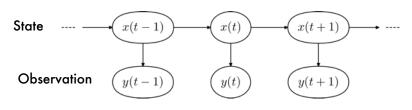


A Database and Evaluation Methodology for Optical Flow. Baker et al. IJCV. 2011

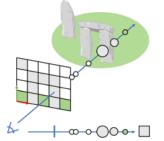
Monocular Depth Estimation, Feature Tracking



Optimal Estimation



Neural Radiance Fields



Silvio Savarese & Jeannette Bohg

Lecture 10

Exercise

- Use an to manipulate (pen, water bottle, a mask, ...)
- What information do you need to solve a manipulation task, i.e., to make decision?
- How do you get this information?

4

Representations for Manipulation Tasks

0 surveys completed

0 surveys underway

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

How do you get this information? (Be concise)

Join by Web

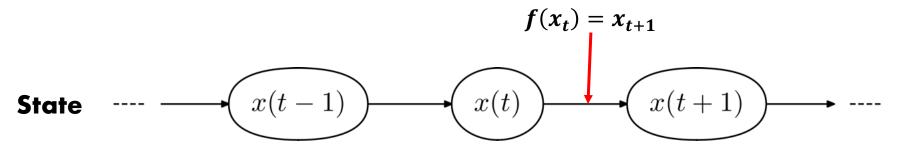
PollEv.com/jeannetteboh707

Join by QR code Scan with your camera app

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Outline of this lecture

- What is a state? What is a representation?
- What are the different kinds of representations?
- How can we extract state from raw sensory data?
- How can we learn good representations form data?



Markov Model

Sparse Cartpole Acrobot Swingup

Hopper Hop

Walker Run

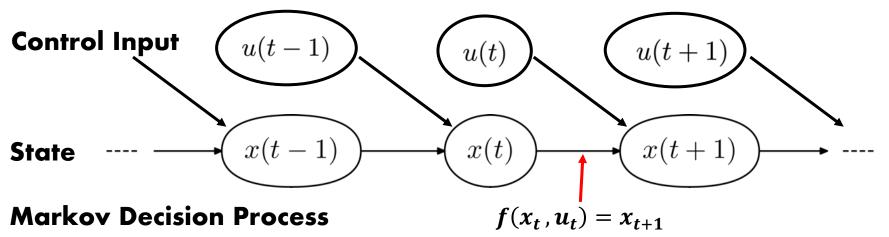
Quadruped Run

DeepMind Control Suite. Tassa et al. 2018

Silvio Savarese & Jeannette Bohg

Lecture 10

9



Sparse Cartpole Acrobot Swingup

Hopper Hop

Walker Run

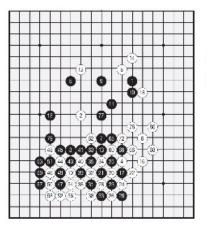
Quadruped Run

DeepMind Control Suite. Tassa et al. 2018

Silvio Savarese & Jeannette Bohg

Lecture 10

10



3³⁶¹ states?

Game of Go

- an exponentially large number of states?
- infeasible to enumerate, memorize, or search

256^{3x500x500}?

Images

Image space has exponentially more states than Go.

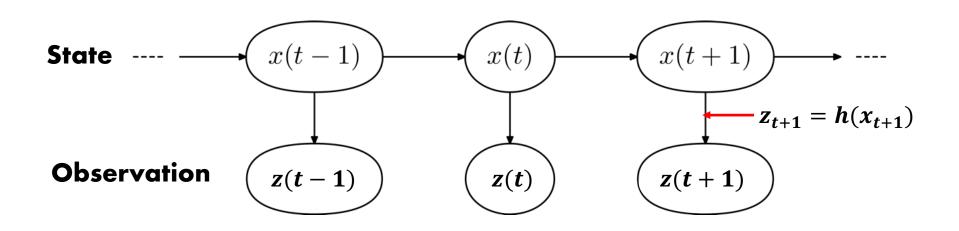
Lecture 10

11

1-May-24

Examples from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

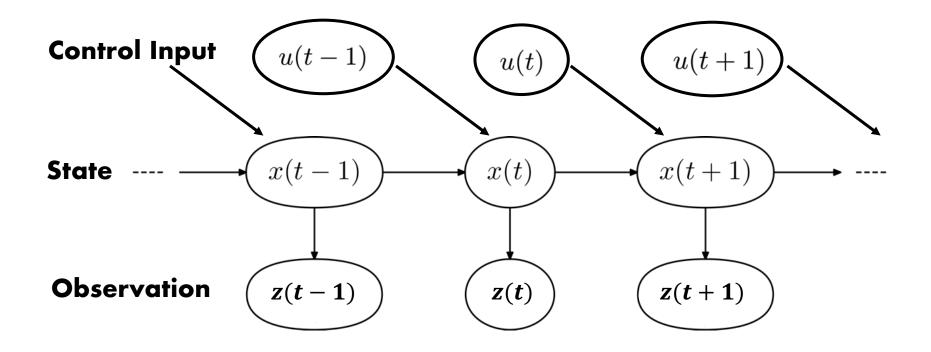


Hidden Markov Model

Silvio Savarese & Jeannette Bohg

Lecture 10

12



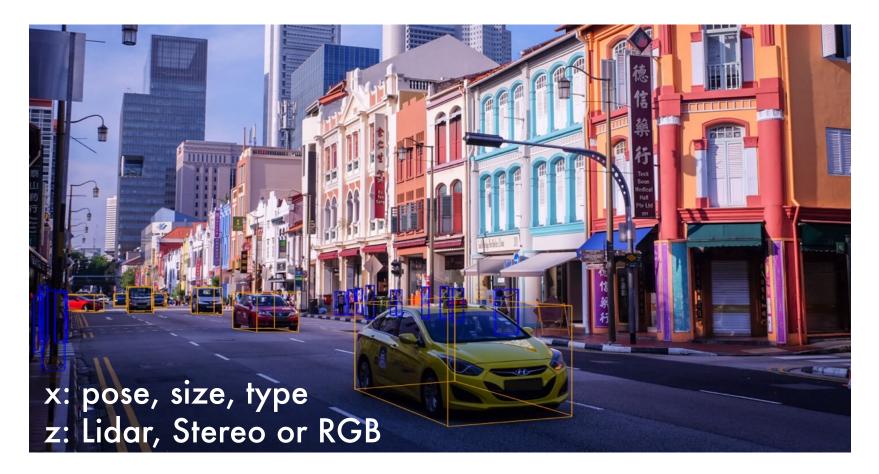
Partially Observable Markov Decision Process

Silvio Savarese & Jeannette Bohg

Lecture 10

13

Representations for Autonomous Driving

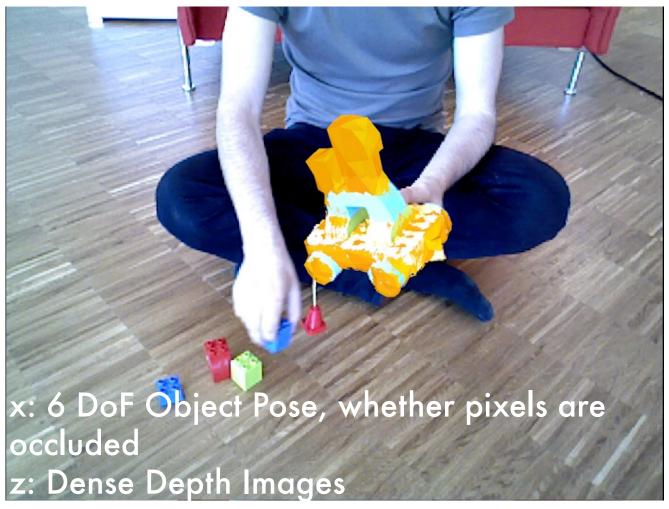


Lecture 10

Image adapted from NuScenes by Motional. nuscenes.org

Silvio Savarese & Jeannette Bohg

Representations for Manipulation



Manuel Wühtrich et al. "Probabilistic Object Tracking using a Depth Camera", IROS 2013

Silvio Savarese & Jeannette Bohg Lecture 10

Meaning in English

"the way that someone or something is shown or described:" "a sign, picture, model, etc. of something"

- Cambridge Dictionary

Silvio Savarese & Jeannette Bohg Lecture 10

Representations in Cognitive Science

Symbolic View

"[...] a hypothetical internal cognitive symbol that represents external reality" (Morgan '14)

"[...] a formal system for **making explicit** certain entities or types of **information** [...]" (Marr '10)

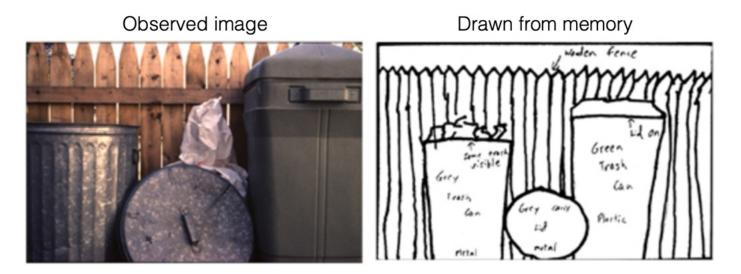
"[...] **intermediaries** between the observing subject and the objects, processes or other entities observed in the external world. These intermediaries [...] represent to the mind the objects of that world." (Wikipedia - Mental Representations - Representationalism)

Embodied View

"... actions are directly triggered by stimuli in the environment without the need for internal representations" (Gibson '66, Zech '19 on Embodied Cognition)

"... actions are **represented by their anticipated effect**, that is, action representations essentially entail a mental model of a needed future environmental state" (Jeannerod '06, Zech '19)

Representations in Cognitive Science



[Bartlett, 1932] [Intraub & Richardson, 1989]

1-May-24

Example from Advances in Computer Vision – MIT – 6.869/6.819

Silvio Savarese & Jeannette Bohg

Lecture 10

18

Representations in Machine Learning

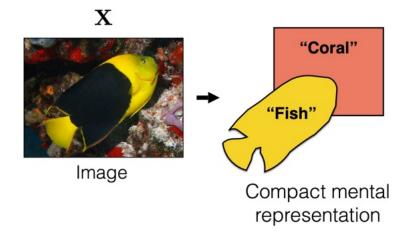
"Features", "A good representation is also one that is useful as input to a supervised predictor." (Bengio '14)

"create a **representation** of the data to provide the model with a **useful vantage point into the data**'s key qualities. [...] to train a model, you must choose the set of **features that best represent the data**." (Google Crash Course of ML Concepts)

" [...] world models, **internal models of how the world works**."; "(1) estimate missing information about the state of the world not provided by perception, (2) predict plausible future states of the world." (YLC '22)

Silvio Savarese & Jeannette Bohg Lecture 10

Representations in Computer Vision



Input: grey scale, color, depth image, point cloud – Sensor measurements of the world
Output: Symbols, abstract shapes, 6D pose – Often Representation for Decision-Making
Intermediate Representations: Compact summary of the sensory information

Lecture 10

20

1-May-24

Example from Advances in Computer Vision – MIT – 6.869/6.819

Requirements for Good Representations

- Compact (minimal)
- Explanatory (sufficient)
- Disentangled (independent factors)
- Hierarchical (feature reuse)
- Makes downstream perception problem easier
- Generalizes over many tasks

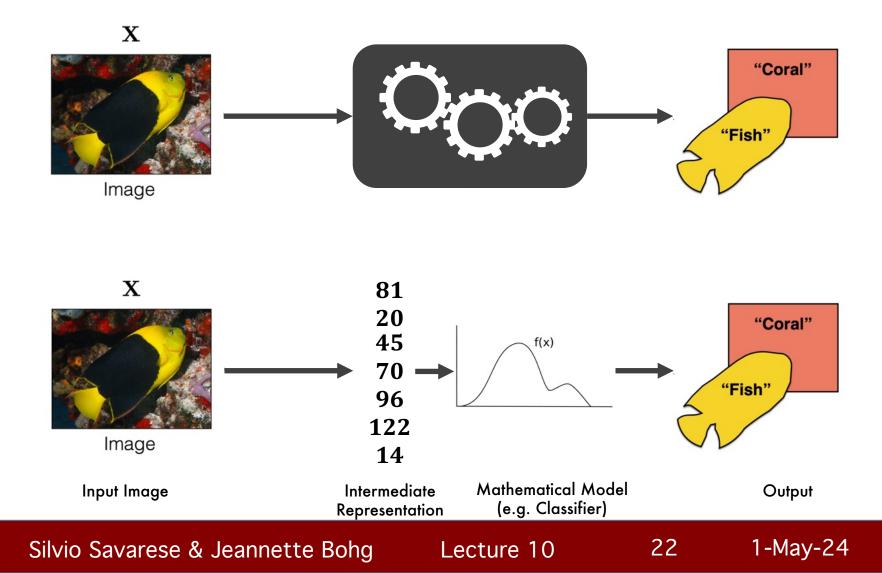
[See "Representation Learning", Bengio 2013, for more commentary]

Lecture 10

"Coral"

"Fish"

Typical CV Pipeline



Example

Example from CS331B: Representation Learning in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10

23

Example

Example from CS331B: Representation Learning in Computer Vision

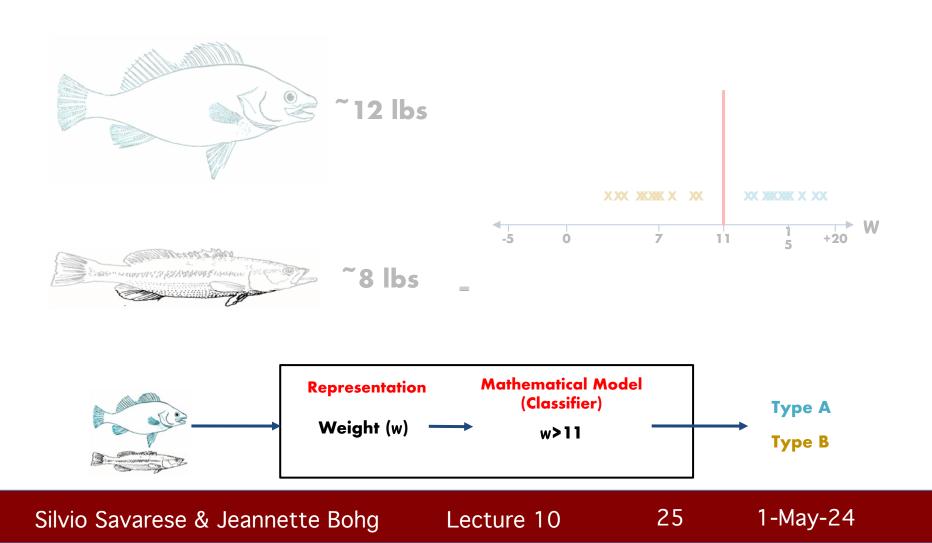
Silvio Savarese & Jeannette Bohg

Lecture 10

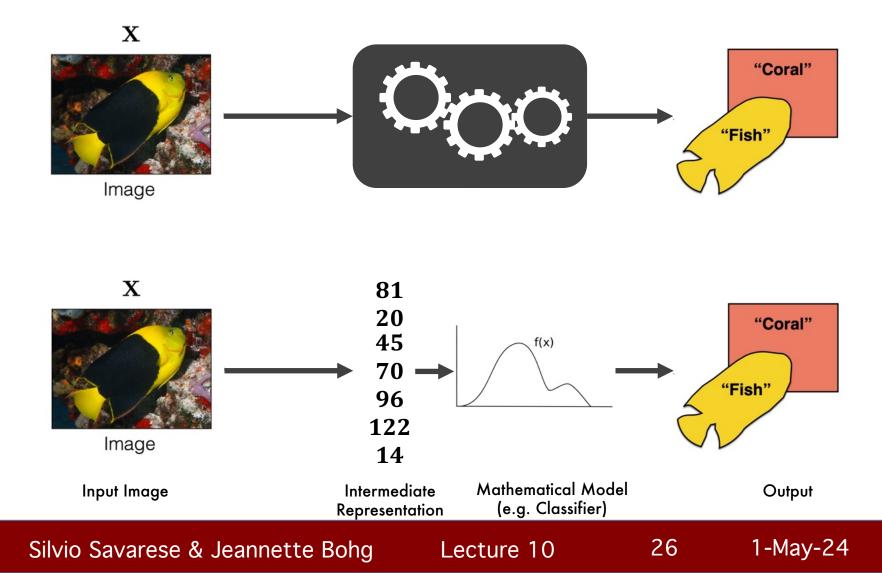
24

Example from CS331B: Representation Learning in Computer Vision

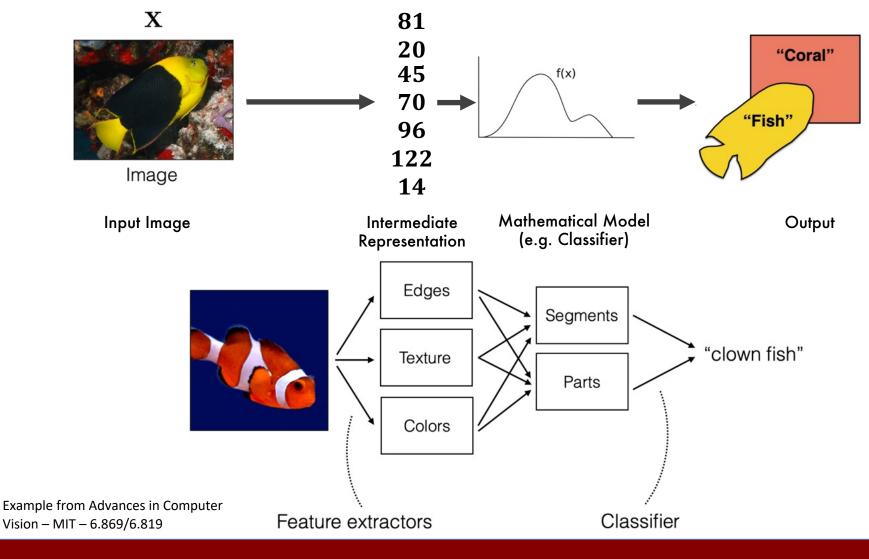
Example



Typical CV Pipeline



Traditional CV Pipeline



Silvio Savarese & Jeannette Bohg

Lecture 10

Represent these cats with a cat detector!

Example from CS331B: Representation Learning in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10

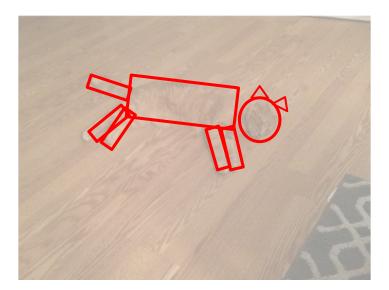
Represent these cats with a cat detector! (II)

Example from CS331B: Representation Learning in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10

Represent these cats with a cat detector! (II)



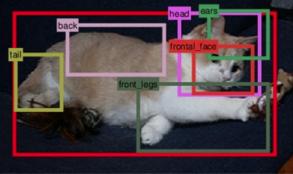
Example from CS331B: Representation Learning in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10

Represent these cats with a cat detector! (III)



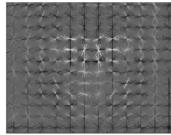


Example from CS331B: Representation Learning in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10

Represent these cats with a cat detector! (IV)

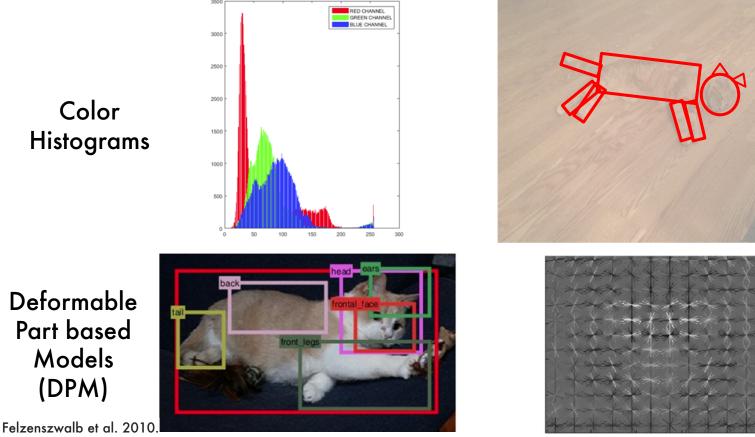


Example from CS331B: Representation Learning in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10

Summary of Traditional Components



Model based Shapes

Histogram of Gradients (HOG)

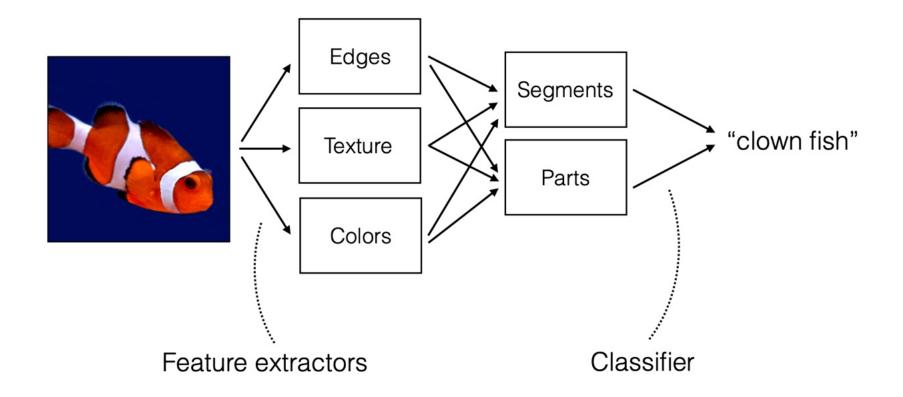
Felzenszwalb et al. 2010 Dalal and Triggs, 2005. Beis and Lowe, 1997.

Lecture 10

33

Example from CS331B: Representation Learning in Computer Vision

Traditional CV Pipeline

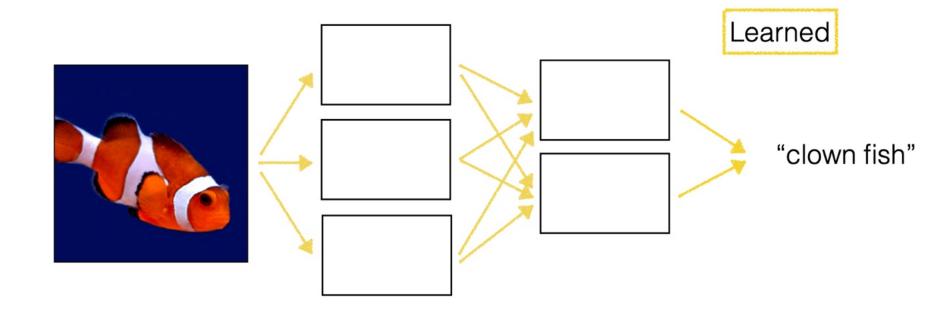


Example from Advances in Computer Vision – MIT – 6.869/6.819

Silvio Savarese & Jeannette Bohg

Lecture 10

Learned CV Pipeline



Example from Advances in Computer Vision – MIT – 6.869/6.819

Silvio Savarese & Jeannette Bohg

Lecture 10

35

Learned CV Pipeline

Go playing can be solved in representation space.

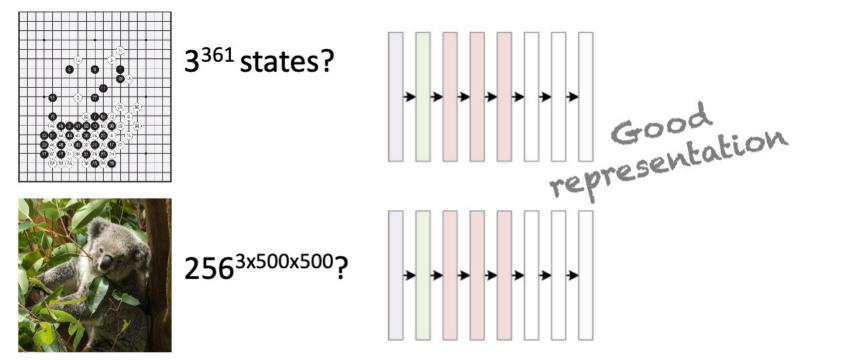


Image recognition is solved in representation space.

Examples from MIT - 6.8300/1 Advances in Computer Vision

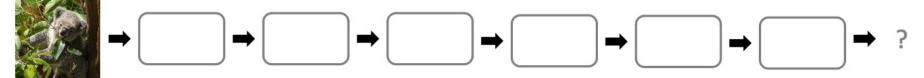
Silvio Savarese & Jeannette Bohg

Lecture 10

36

Learned CV Pipeline

general modules (instead of specialized features)



compose simple modules into complex functions

- build multiple levels of abstractions
- learn by back-prop
- learn from data
- reduce domain knowledge and feature engineering

Examples from MIT - 6.8300/1 Advances in Computer Vision

Lecture 10

Introduction to Neural Networks and CNNs

Check Friday's CA Session (5/10)

Components

- Each convolutional "layer" is represented by a 3D tensor of shape $[h \times w \times n_{channels}]$
- Between two convolutional layers, the weights are of the shape [relative x-position, relative y-position, input channels, output channels]
- "Convolve" operation consists of 4 hyperparameters:
 - Number of filters, or *depth* (each channel also called an "activation map")
 - · Spatial extent, or receptive field
 - The stride
 - Amount of zero-padding
- With this, the shape of layer convolved from layer 1 is:

•
$$[(W - F + 2P)/S + 1, (H - F + 2P)/S + 1, K]$$

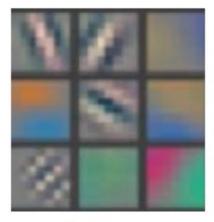
Input Volume (+pad 1) (7x7x3)							3)	Filte	er W0 (3)	(3x3)	Filter W1 (3x3x3)				Out	Output Volume (3x3x2)				
x[:,:,0]								w0[:,:,0]		w1[:,:,0]				0[:	0[:,:,0]				
0	0	0	0	0	0	0		1	-1 -1		0	0	1		-6	-7	-5			
0	1	2	0	0	1	0		-1	0 0		1	1	0		-9	-6	-9			
0	2	2	0	1	0	0		-1	-1 0		0	0	0		3	-5	-8			
0	2	2	1	2	1	0			:,:,1)		w1[,1	1	0[:					
0	0	1	1	0	2	0	/	-1	0 1		1	0	0		2	3	-2			
0	2	1	0	2	1	0	/	-1	0 0		1	-1	1		7	4	1			
0	0	0	0	0	0/	6	/	-1	-1 -1		-1	0	0		5	5	7			
¥1.	, . ,	11		1	/		//	10w		w1[:,:	:,2	1							
0		0	0	0	0	0		-1	11/		-1	1	0							
0	0	2	0	0	1	0		Ø	0/0		0	-1	1							
0	1	1	0	2	2	0	1	1	1 -1		1	0	-1							
0	0	1	1	0	2	0 /	/	Han	1 b0 (1x1)	-1)	Riss	hl	(1x1	×1)						
0	1	2	0	2	0	6	/		: /: ,0]				:,0							
0	0	2	0	1	9/	0	11	1	/		0									
0	0	0	0	0	6	0/	//	7												
x[:,:,2]																				
0	0	0	0	0	0/	0	[/													
0	2	2	1	0	10	0	/													
0	2	1	0	ø	1	0														
0	0	2	2	2	1	0	·													
0	1	2	1	0	2	0														
0	2	1	1	1	1	0														

Silvio Savarese & Jeannette Bohg

Lecture 10

0 0 0 0 0 0 0

38



features

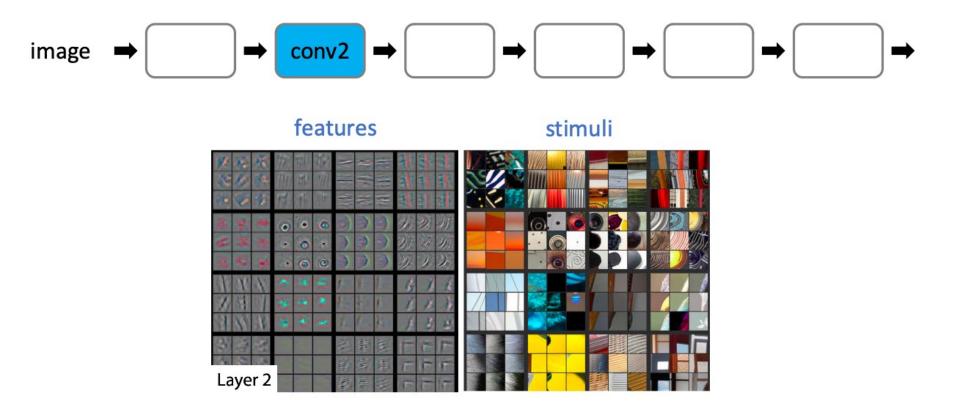
stimuli (patches with the highest 1-hot activations)

"Visualizing and Understanding Convolutional Networks", Zeiler & Fergus. ECCV 2014

Examples from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10

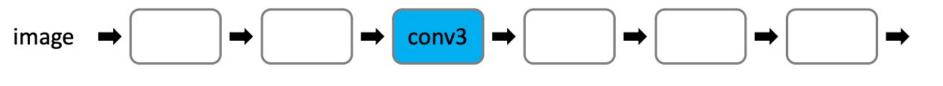


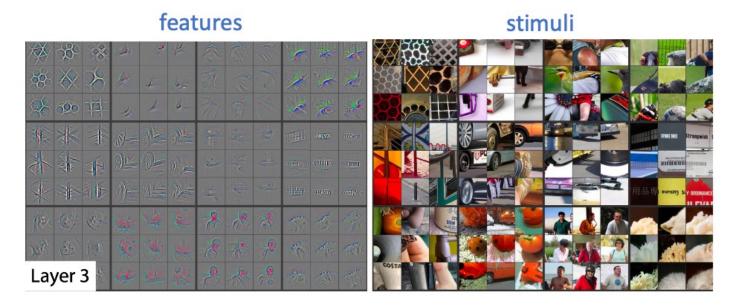
"Visualizing and Understanding Convolutional Networks", Zeiler & Fergus. ECCV 2014

Examples from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10



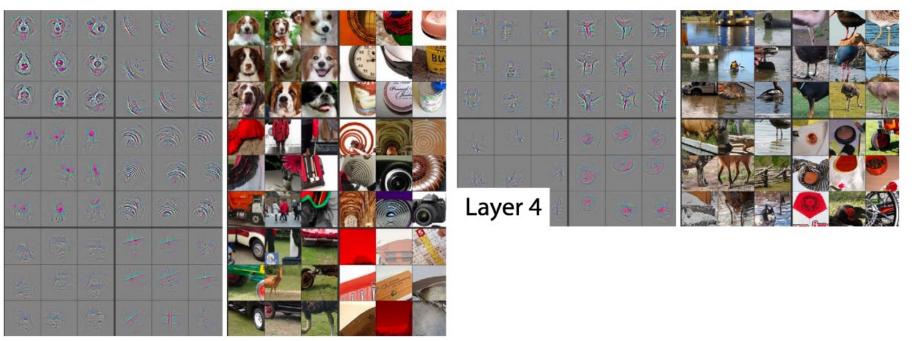


"Visualizing and Understanding Convolutional Networks", Zeiler & Fergus. ECCV 2014

Examples from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10



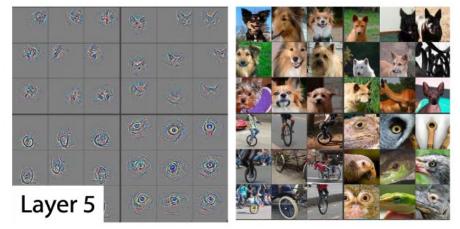
"Visualizing and Understanding Convolutional Networks", Zeiler & Fergus. ECCV 2014

Examples from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10





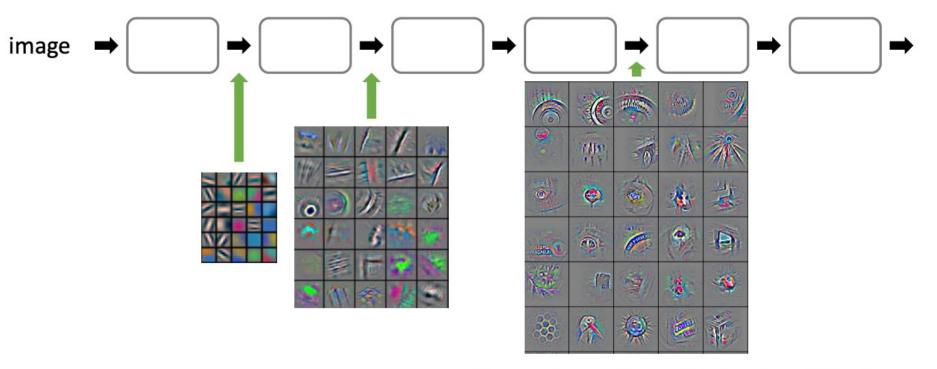
Deeper layers have "higher-level" features.

"Visualizing and Understanding Convolutional Networks", Zeiler & Fergus. ECCV 2014

Examples from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10



Deeper layers have "higher-level" features.

"Visualizing and Understanding Convolutional Networks", Zeiler & Fergus. ECCV 2014

Examples from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

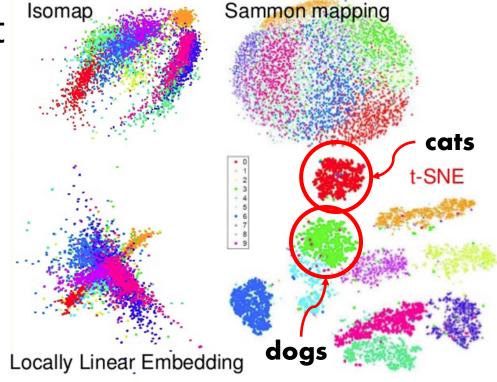
Lecture 10

44

Understanding representations through low-dimensional embeddings

• 6000 MNIST Digit

- tSNE
- Isomap
- Sammon M
- LLE



Silvio Savarese & Jeannette Bohg

Lecture 10

1-May-24

Understanding representations through low-dimensional embeddings

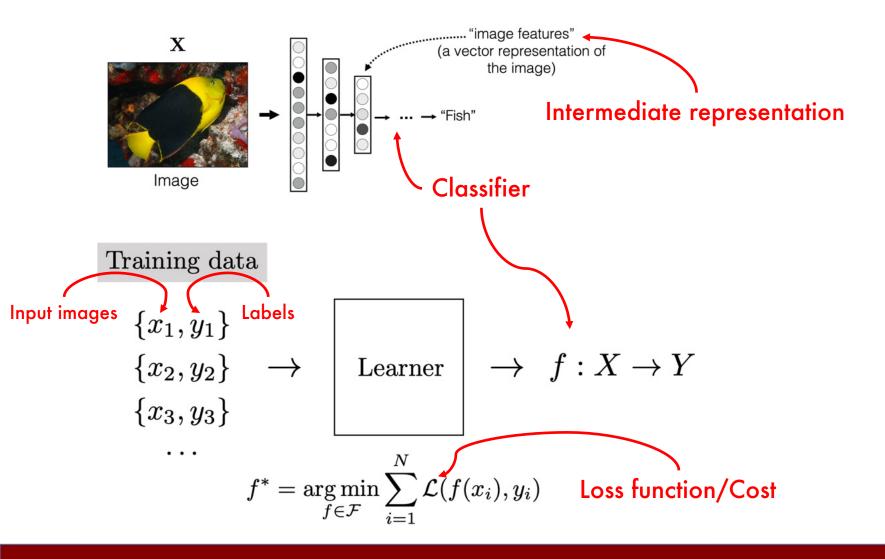
• tSNE

Van der Maaten & Hinton. 2008

Silvio Savarese & Jeannette Bohg

Lecture 10

How do you learn a representation?



Silvio Savarese & Jeannette Bohg

Lecture 10

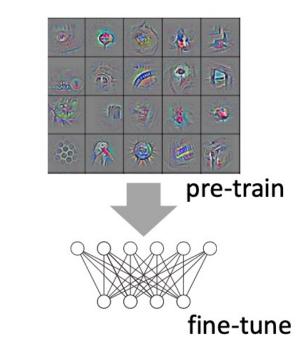
1-May-24

Learned Representations are Transferable

The single most important discovery in DL revolution

Transfer learning:

- pre-train on large-scale data
- fine-tune on small-scale data
- enable DL for small datasets
- revolutionize computer vision
- data: engine for general representation
- GPT: a similar principle



1-May-24

"DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", Donahue et al. arXiv 2013 "Visualizing and Understanding Convolutional Networks", Zeiler & Fergus. arXiv 2013 "CNN Features off-the-shelf: an Astounding Baseline for Recognition", Razavian. arXiv 2014

Slide from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10

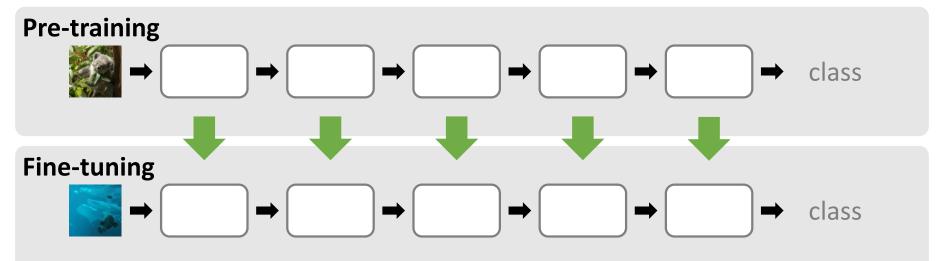
Pre-training

Pre-training:

- to learn general representations
- on large-scale data
- train for a long time
- with large models

Slide from MIT - 6.8300/1 Advances in Computer Vision

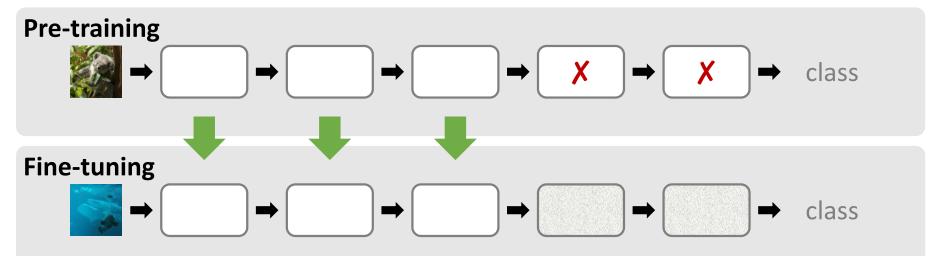
Lecture 10



Fine-tuning:

- transfer weights to **specific** tasks
- on small-scale data
- train for a **short** time, **lower** learning rate
- enable large models with lower risk of overfitting

Slide from MIT - 6.8300/1 Advances in Computer Vision



Partial transfer

- pre-train and target domains may differ
- highest-level features are too adapted to pre-training

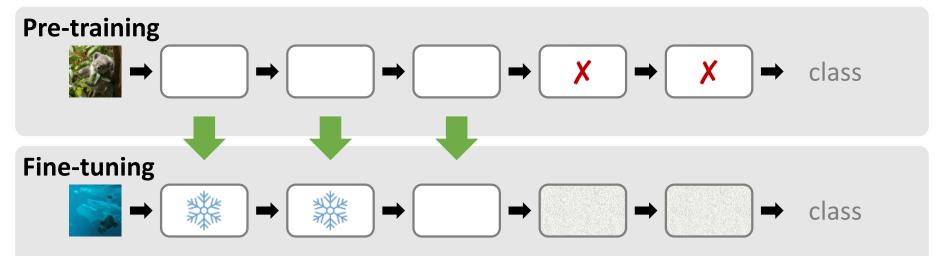
Lecture 10

51

1-May-24

• randomly initialize new layers

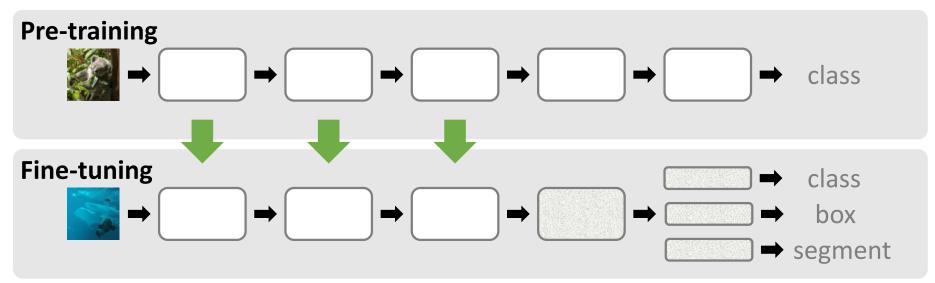
Slide from MIT - 6.8300/1 Advances in Computer Vision



Frozen weights

- freeze some/all pre-trained weights
- reduce overfitting if data is too little
- save memory, speed up training

Slide from MIT - 6.8300/1 Advances in Computer Vision



Network surgery

re-purpose the model for other tasks (detect, segment)

Lecture 10

1-May-24

53

• general features + task-specific predictions

Slide from MIT - 6.8300/1 Advances in Computer Vision

How can we (pre-)train good representations?

54

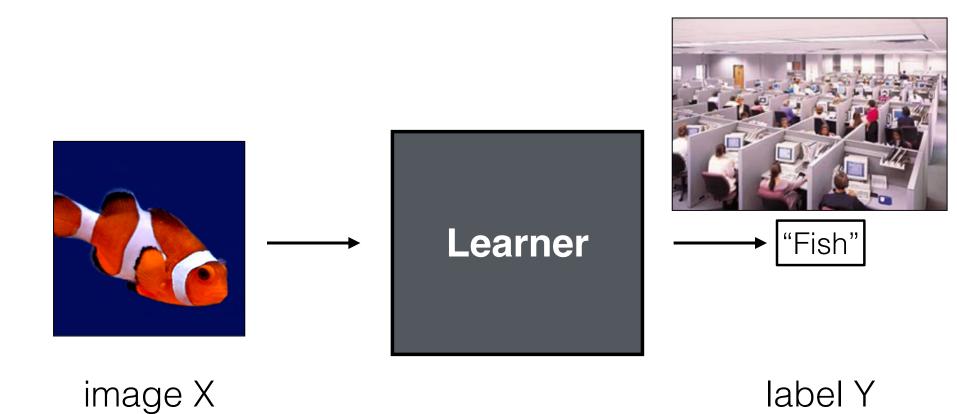
Lecture 10

1-May-24

• Model (network architecture)

- scaling: deep, wide, large
- inductive bias: convolution, recurrency, attention
- Data
 - scaling
 - curating, cleaning, filtering, ...
- Learning objective
 - supervised
 - unsupervised
 - self-supervised

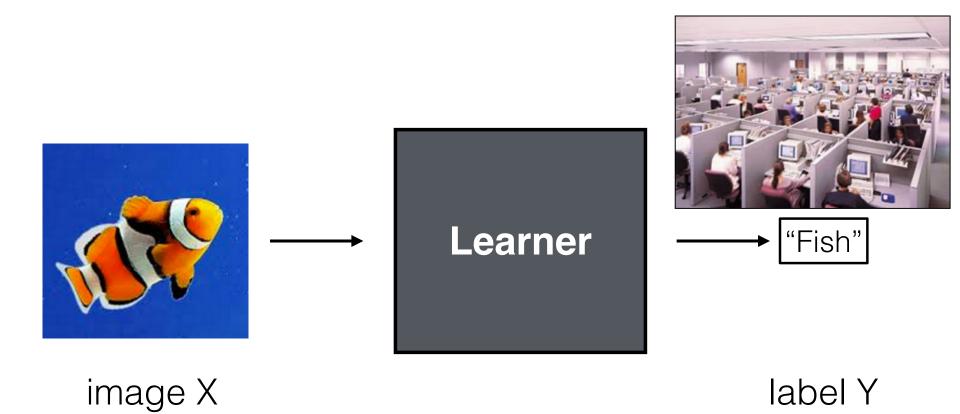
Slide from MIT - 6.8300/1 Advances in Computer Vision



Silvio Savarese & Jeannette Bohg

Lecture 10

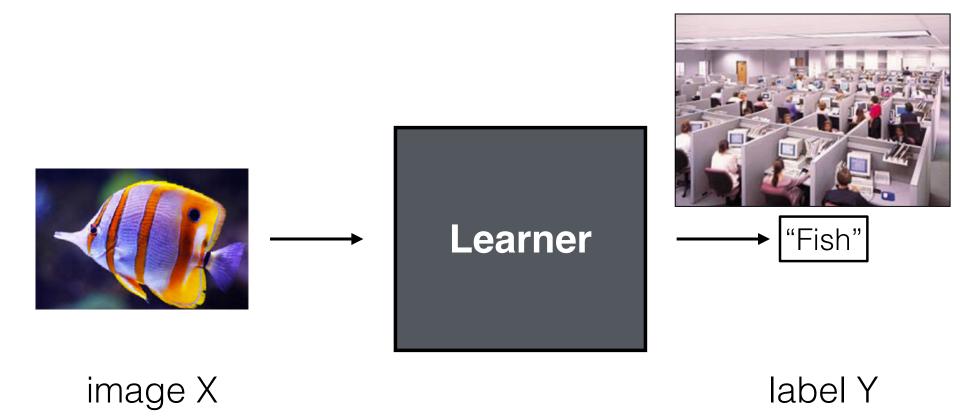
55



Silvio Savarese & Jeannette Bohg

Lecture 10

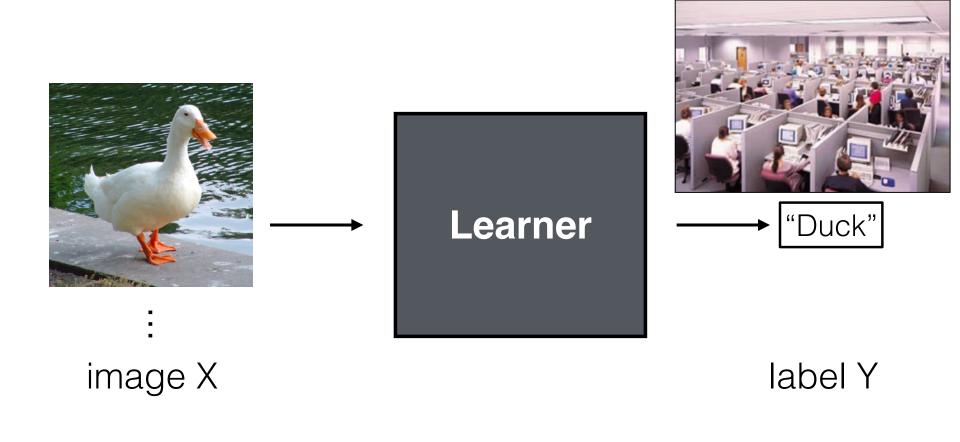
56



Silvio Savarese & Jeannette Bohg

Lecture 10

57



Silvio Savarese & Jeannette Bohg

Lecture 10

58

Learning in the wild

Time lapse of a baby playing with toys. Francis Vachon. YouTube

Silvio Savarese & Jeannette Bohg

Lecture 10

Supervised Computer Vision

- Informative
- Expensive
- Limited to teacher knowledge

Vision in Nature

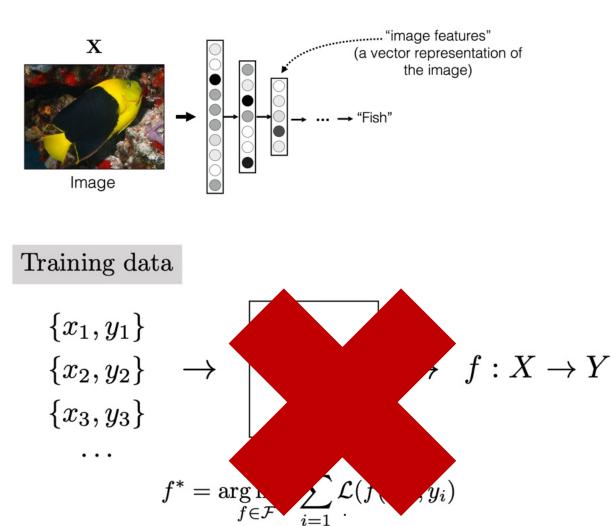
- Cheap
- Noisy
- Harder to interpret

Silvio Savarese & Jeannette Bohg

Lecture 10

60

Learning without Labels



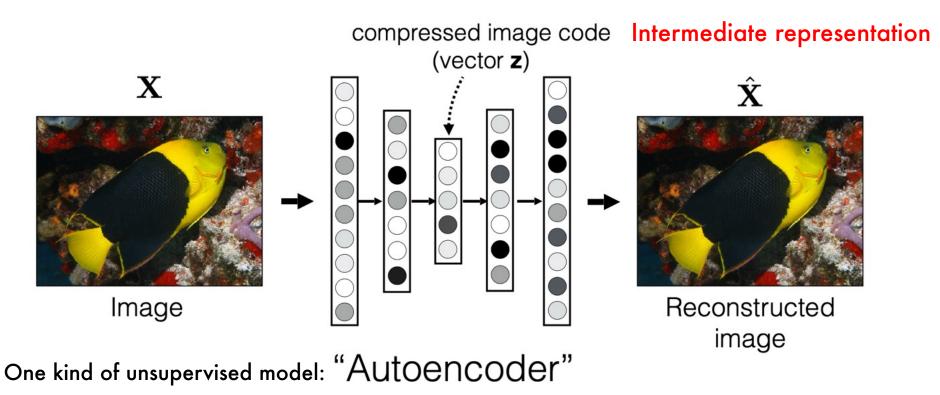
Silvio Savarese & Jeannette Bohg

Lecture 10

61

Unsupervised Representation Learning

No category or symbolic label. Instead: learn to reconstruct.



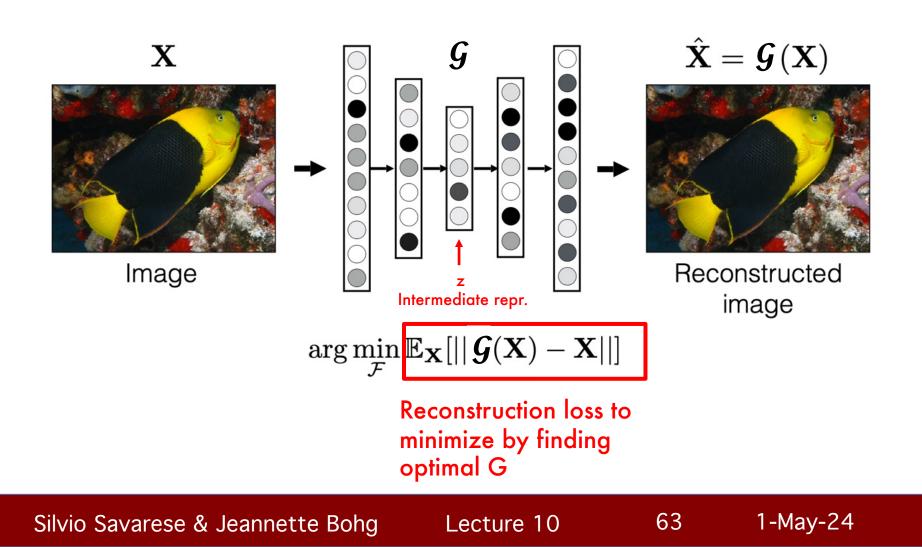
[e.g., Hinton & Salakhutdinov, Science 2006]

Silvio Savarese & Jeannette Bohg

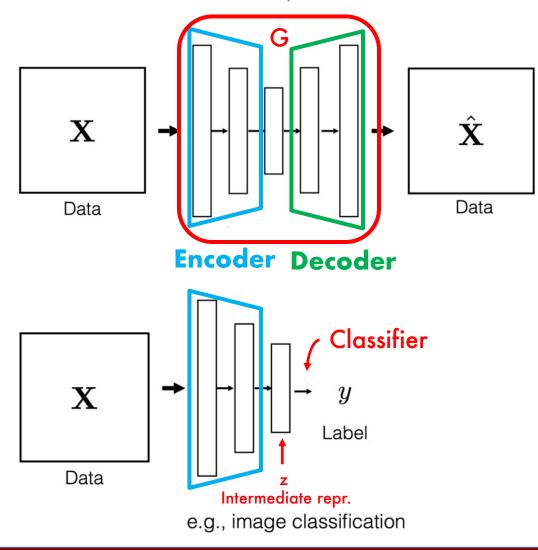
Lecture 10

62

Autoencoder



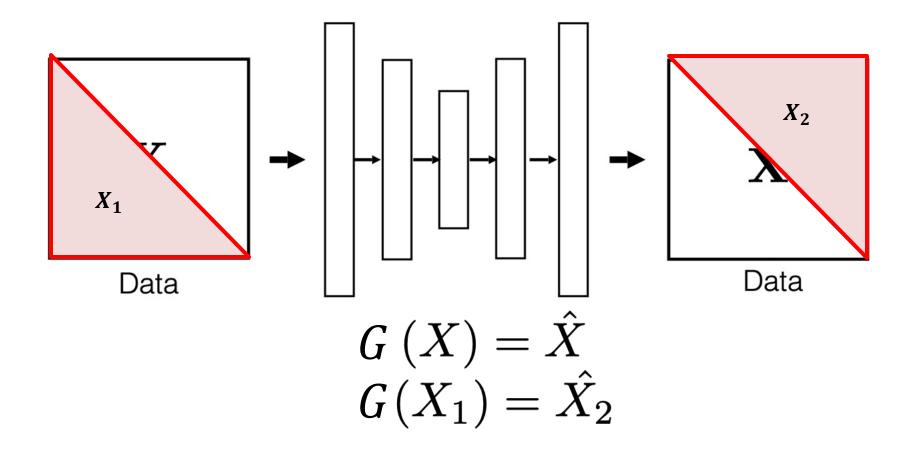
Data Compression & Task Transfer



Silvio Savarese & Jeannette Bohg

Lecture 10

Self-Supervision



Silvio Savarese & Jeannette Bohg

Lecture 10

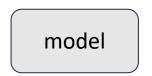
1-May-24

Predictive Learning: Language Models

Next word prediction (GPT)

• Predict the next word (token) given a prefix

"The students opened their _____



books

1-May-24

Radford, et al., "Improving Language Understanding by Generative Pre-Training", 2018

66

Lecture 10

Slide from MIT - 6.8300/1 Advances in Computer Vision

Predictive Learning: Language Models

Masked language modeling (BERT)

• Predict the masked words (tokens) in a text

The _____ opened their _____ and began to _____

model

Lecture 10

students .. books .. read

1-May-24

Devlin, et al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2018

67

Slide from MIT - 6.8300/1 Advances in Computer Vision

Predictive Learning: Computer Vision

Masked image modeling (Context Encoders)

• Predict the masked regions using ConvNets

Pathak, et al., "Context Encoders: Feature Learning by Inpainting", CVPR 2016

1-May-24

68

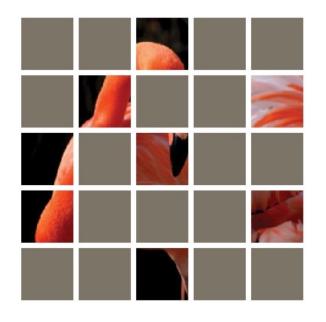
Lecture 10

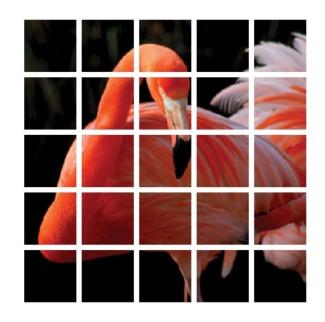
Slide from MIT - 6.8300/1 Advances in Computer Vision

Predictive Learning: Computer Vision

Masked image modeling (Masked Autoencoder)

• Predict the masked patches using Transformers





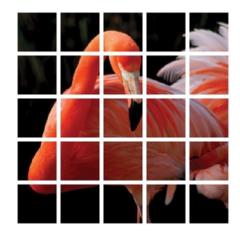
He, et al., "Masked Autoencoders Are Scalable Vision Learners", CVPR 2022

1-May-24

69

Lecture 10

Slide from MIT - 6.8300/1 Advances in Computer Vision



patches as visual tokens (Vision Transformer)

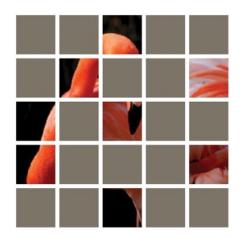
He, et al., "Masked Autoencoders Are Scalable Vision Learners", CVPR 2022

Slide from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10

70



random masking

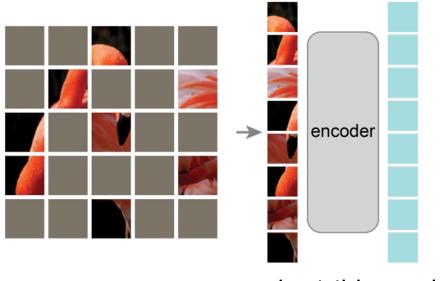
He, et al., "Masked Autoencoders Are Scalable Vision Learners", CVPR 2022

Slide from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10

71



encode visible patches w/ Transformer

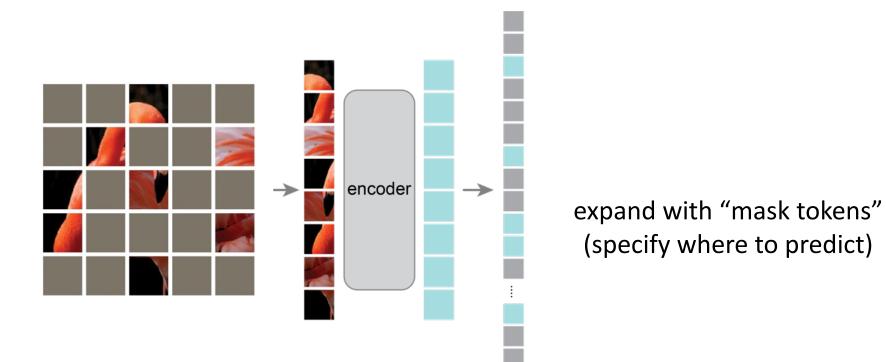
He, et al., "Masked Autoencoders Are Scalable Vision Learners", CVPR 2022

1-May-24

Slide from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10



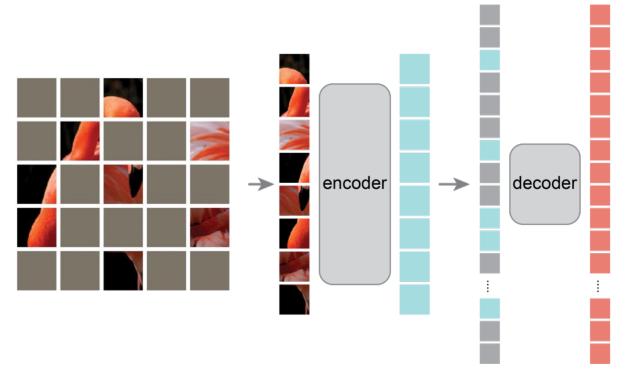
He, et al., "Masked Autoencoders Are Scalable Vision Learners", CVPR 2022

1-May-24

73

Lecture 10

Slide from MIT - 6.8300/1 Advances in Computer Vision



predict the unknown

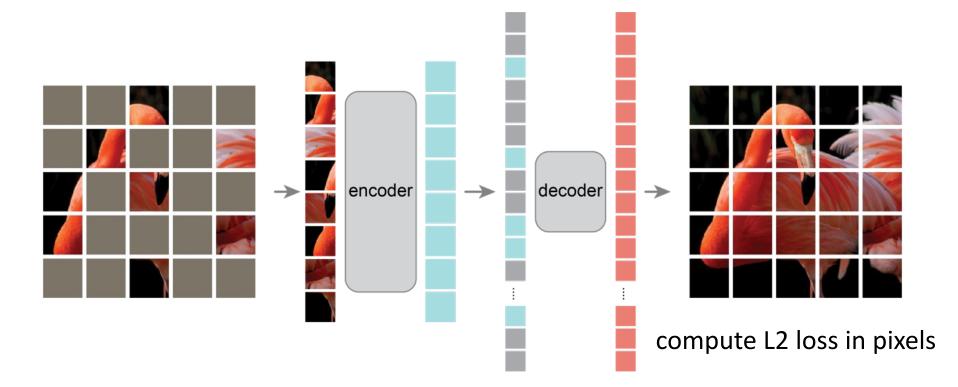
He, et al., "Masked Autoencoders Are Scalable Vision Learners", CVPR 2022

Slide from MIT - 6.8300/1 Advances in Computer Vision

Silvio Savarese & Jeannette Bohg

Lecture 10

74



Lecture 10

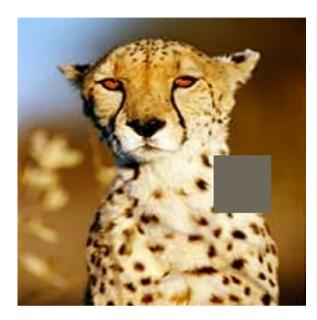
He, et al., "Masked Autoencoders Are Scalable Vision Learners", CVPR 2022

75

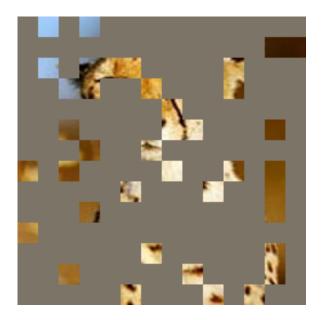
1-May-24

Slide from MIT - 6.8300/1 Advances in Computer Vision

How to learn good representations by predicting?



 predicting a <u>small portion</u> may not require high-level understanding



 predicting a <u>large portion</u> of unknown patches encourages to learn semantic features

He, et al., "Masked Autoencoders Are Scalable Vision Learners", CVPR 2022

1-May-24

76

Lecture 10

Slide from MIT - 6.8300/1 Advances in Computer Vision

How to learn good representations by predicting?

input

MAE prediction

Lecture 10

original

1-May-24

He, et al., "Masked Autoencoders Are Scalable Vision Learners", CVPR 2022

77

Slide from MIT - 6.8300/1 Advances in Computer Vision

Representation Learning

Reinforcement Learning (Cherry)

Predicting a scalar reward given once in a while A few bits for some samples

Supervised Learning (Chocolate Coat)

Predicting category or vector of scalars per input as provided by human labels. 10-10k bits per sample

Unsupervised / Self-Supervised Learning (Cake)

Predicting parts of observed input or predicting future observations or events Millions of bits per sample

Visualisation Idea by Yann LeCun Photo by Kristina Paukshtite from Pexels

Silvio Savarese & Jeannette Bohg

Lecture 10

78

Summary of what you learned today

- State: Quantity that describes the most important aspect of a dynamical system at time t
- Representation: data format of input or output including a low-dimensional representation of sensor data

Summary of what you learned today

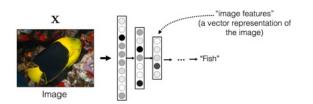
- Learned versus interpretable representations
- Visualize learned representations
- How to learn representations?
 - Supervised
 - Unsupervised
 - Self-supervised

Silvio Savarese & Jeannette Bohg

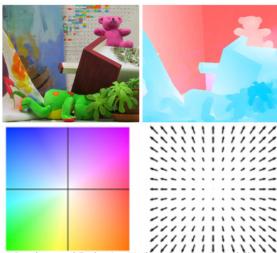
Lecture 10

Next Lectures

Representations & Representation Learning

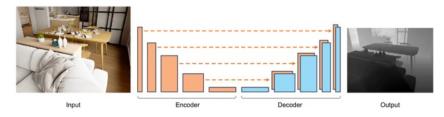


Optical & Scene Flow

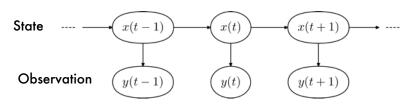


A Database and Evaluation Methodology for Optical Flow. Baker et al. IJCV. 2011

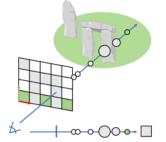
Monocular Depth Estimation, Feature Tracking



Optimal Estimation



Neural Radiance Fields



Silvio Savarese & Jeannette Bohg

Lecture 10

CS231 Computer Vision: From 3D Reconstruction to Recognition

Next lectures: Midterm (Monday) Monocular Depth Estimation & Feature Tracking (Wednesday)

Silvio Savarese & Jeannette Bohg

Lecture 10

